摘要:
The invention relates to a composition based on an impact-resistant polyamide thermoplastic resin, comprising, as a blend: from 60 to 98% by weight of polyamide resin (A) and from 2 to 40% by weight of a blend of at least one polyamide-block graft copolymer (B) composed of a polyolefin backbone and of at least one polyamide graft in which the grafts are attached to the backbone by the residues of an unsaturated monomer (X) having a functional group capable of reacting with an amine-terminated polyamide, the residues of the unsaturated monomer (X) being attached to the backbone by grafting or copolymerization via its double bond, and of a non-reactive ethylenic polymer (C) that is miscible with (B) and has a density of less than 0.960 g/cm3. This composition has improved impact resistance properties and also satisfactory melt flow.The invention also relates to the method of obtaining said composition and also to its use for manufacturing products or parts obtained by injection moulding or extrusion.
摘要翻译:本发明涉及一种基于耐冲击聚酰胺热塑性树脂的组合物,其包含作为共混物:60至98重量%的聚酰胺树脂(A)和2至40重量%的至少一种 由聚烯烃主链和至少一个聚酰胺接枝物构成的聚酰胺嵌段接枝共聚物(B),其中接枝物通过不饱和单体(X)的残基连接到主链上,所述不饱和单体(X)的残基可具有与胺 - 封端的聚酰胺,不饱和单体(X)的残基通过其双键接枝或共聚而连接到主链上,和与(B)可混溶的非反应性乙烯性聚合物(C)并且具有较小的密度 大于0.960g / cm 3。 该组合物具有改善的耐冲击性能和令人满意的熔体流动性。 本发明还涉及获得所述组合物的方法,以及其用于制造通过注射成型或挤出获得的产品或部件的用途。
摘要:
The invention relates to a mixture comprising by weight, to give a total of 100%, 99-10% a polyamide block and polyether block copolymer (A) predominantly consisting of lauryl lactam radicals, 1-99% at least one type of polymer (B) selected from polyamides other than polyamide 12, copolyamides which do not consist of the lauryl lactam radicals and the polyamide block and polyether block copolymers whose polyamide blocks do not predominantly consist of the lauryl lactam radicals. The articles, for example, films, foils, strings and tubes made from the inventive mixture are also disclosed.
摘要:
The present invention relates to the use of a microcrystalline polyamide for obtaining an object having all or part of its outer surface formed from this microcrystalline polyamide and having a particular surface finish, in which: the manufacture of the object comprises steps carried out hot between the Tg (glass transition temperature) and the Tm (melting point) of this microcrystalline polyamide; the transparency of the microcrystalline polyamide is such that the light transmission at 560 nm on a polished object 1 mm in thickness is greater than 80%, advantageously greater than 88%, the transparency being measured on the object obtained by standard processing methods, such as injection moulding and sheet extrusion/calendering. Advantageously, the microcrystalline polyamide is such that its degree of crystallinity is greater than 10% and less than 30% (1st DSC heating according to ISO 11357 at 40° C./min) and the enthalpy of melting is greater than 25 J/g and less than 75 J/g (1st DSC heating according to ISO 11357 at 40° C./min). Preferably, it such that its Tg (glass transition temperature) is between 40° C. and 90° C. and its Tm (melting point) is between 150° C. and 200° C. Advantageously, it results from the chain-linking of monomers such that 50% or more, by weight, of these monomers are ≧C9 monomers (i.e. having a number of carbon atoms equal to 9 or higher).
摘要:
The present invention relates to a transparent polyamide 1/interlayer/polyamide 2 multilayer structure manufactured by coextrusion. The invention also relates to a decorated article consisting of an object to which the above structure has been bonded, the polyamide 1 layer being on the outside. The bonding may be carried out by hot pressing or by using an adhesive.
摘要:
The invention relates to a transparent composition comprising, by weight, the total being 100%: 5 to 40% of an amorphous polyamide (B) which results essentially from the condensation: either of at least one diamine chosen from cycloaliphatic diamines and aliphatic diamines and of at least one diacid chosen from cycloaliphatic diacids and aliphatic diacids, at least one of these diamine or diacid units being cycloaliphatic, or of a cycloaliphatic α,ω-aminocarboxylic acid, or of a combination of these two possibilities, and optionally of at least one monomer chosen from α,ω-aminocarboxylic acids or the possible corresponding lactams, aliphatic diacids and aliphatic diamines, 0 to 40% of a supple polyamide (C) chosen from copolymers containing polyamide blocks and polyether blocks and copolyamides, 0 to 20% of a compatabilizer (D) for (A) and (B), 0 to 40% of a supple modifier (M), with the condition that (C)+(D)+(M) is between 0 and 50%, the remainder to 100% being a semi-crystalline polyamide (A). The invention also relates to the articles obtained, such as plates, films, sheets, tubes and profiles, the articles obtained by injection moulding and in particular the films and sheets which are then bonded to skis. The invention also relates to the above articles decorated, for example, by sublimation, and coated with a transparent protective layer consisting of the composition of the invention.
摘要:
Polyamide-based thermoplastic compositions comprising by weight: 50 to 99% of a polyamide (A1), 1 to 50% of a catalyzed polyamide (A2), 0 to 40% of a plasticizer, 0 to 60%, preferably 0 to 30%, of a flexible modifier, the total being 100%, are useful for manufacturing articles, for example, flexible pipes.
摘要:
The invention relates to a thermoplastic composition comprising at least one polymer (M) forming a matrix in which are dispersed at least one polymer (S) and at least one polymer (K) and such that its tensile strength is greater than that of a composition comprising only (M) and (S), the proportion by weight of (M) being the same.
摘要:
The invention relates to a thermoplastic composition comprising at least one polymer (M) forming a matrix in which are dispersed at least one polymer (S) and at least one polymer (K) and such that its tensile strength is greater than that of a composition comprising only (M) and (S), the proportion by weight of (M) being the same.
摘要:
The invention relates to a multilayer structure including: a so-called outer layer (L1) consisting of a composition that primarily includes one or more semicrystalline copolyamides (H), the melting point of which is at least 220° C. and which contains at least 80 mol % of the following two units (s) and (a), wherein the (s) unit denotes one or more semiaromatic (s) units consisting of one of more sub-units from aromatic diacid (sr) and one or more sub-units from aliphatic diamine (sa) having 9 to 13 carbon atoms, and the (a) unit denotes one or more aliphatic units having 8 to 13 carbon atoms per nitrogen atom, the molar ratio (s)/(a) being 1 to 3; and a layer (L2) consisting of a composition primarily containing one or more tetrafluoroethylene (TFE) copolymers, said TFE copolymer being necessarily functionalized when layer (L2) is in contact with layer (L1) or with an intermediate layer that primarily includes one or more polyamides. The invention also relates to the uses of said multilayer structure for transporting fluids in the automotive field.
摘要:
Transparent blend or alloy comprising, by weight, the total being 100%: (A) 1 to 99% of at least one copolymer constituent: which is amorphous or has a crystallinity ranging up to semicrystallinity; and which comprises: (A1) amide units, among which is at least one cycloaliphatic unit; (A2) flexible ether units; (B) 99 to 1% of at least one polymer constituent selected from: (Ba) semicrystalline copolyamides comprising amide units (Ba1) and comprising ether units (Ba2), (Bb) semicrystalline polyamides or copolyamides without ether units, (Bc) transparent polyamides or copolyamides without ether units, which are amorphous or weakly crystalline, and alloys based on such polyamides or copolyamides; and (C) 0 to 50% by weight of at least one polyamide, copolyamide, copolyamide comprising ether units or alloy based on such polyamides or copolyamides other than those used in (A) and (B) above. The resulting blend or alloy has a high transparency such that the transmission at 560 nm on a plate 2 mm thick is greater than 50%.