Abstract:
The invention provides cells and methods of using the cells for the propagation of replication-deficient adenoviral vectors. The cells comprise at least one heterologous nucleic acid sequence which upon expression produces at least one non-adenoviral gene product that complements in trans for a deficiency in at least one essential gene function of one or more regions of an adenoviral genome so as to propagate a replication-deficient adenoviral vector comprising an adenoviral genome deficient in the at least one essential gene function of the one or more regions when present in the cell.
Abstract:
The present invention provides multiply deficient adenoviral vectors and complementing cell lines. Also provided are recombinants of the multiply deficient adenoviral vectors and a therapeutic method, particularly relating to gene therapy, vaccination, and the like, involving the use of such recombinants.
Abstract:
Provided are methods of modulating the persistence of the expression in a cell of a transgene, such as a transgene in a non-Herpes vector or in at least E4null adenoviral vector, and related systems. One method comprises contacting the cell with a non-Herpes vector comprising and expressing a gene encoding HSV ICP0, whereupon expression of HSV ICP0 the persistence of expression of the transgene is modulated. Further provided is a system for modulating the persistence of expression of a transgene, which system comprises a non-Herpes vector comprising (i) a gene encoding HSV ICP0 and (ii) a transgene, wherein the HSV ICP0 modulates the persistence of expression of the transgene and either the non-Herpes vector comprises the transgene or the system further comprises a vector, in which case the vector comprises the transgene. Another method comprises contacting the cell with an at least E4null adenoviral vector comprising (i) a transgene and (ii) a gene encoding a trans-acting factor, wherein the trans-acting factor modulates the persistence of expression of the transgene and the gene encoding the trans-acting factor is not from the E4 region of an adenovirus. Yet another method comprises contacting a cell simultaneously or sequentially with (i) an at least E4null adenoviral vector comprising a transgene and (ii) a viral vector comprising a gene encoding a trans-acting factor, which is not from the E4 region of an adenovirus and which modulates the persistence of expression of the transgene. Also provided is a system for modulating the persistence of expression of a transgene in an at least E4null adenoviral vector, which system comprises (i) an at least E4null adenoviral vector comprising a transgene and (ii) a gene encoding a trans-acting factor, wherein the gene encoding the trans-acting factor is not from the E4 region of an adenovirus, the trans-acting factor modulates the persistence of expression of the transgene, and either the at least E4null adenoviral vector comprises the gene encoding the trans-acting factor or the system comprises a viral vector, in which case the viral vector comprises the gene encoding the trans-acting factor.
Abstract:
The present invention provides a chimeric protein IX (pIX). The chimeric pIX protein has an adenoviral pIX domain and also a non-native amino acid. Where the non-native amino acid is a ligand that binds to a substrate present on the surface cells, the chimeric pIX can be used to target vectors containing such proteins to desired cell types. Thus, the invention provides vector systems including such chimeric pIX proteins as well as methods of infecting cells using such vector systems.
Abstract:
An adenoviral vector comprising (a) an adenoviral genome deficient in the E4 region of the adenoviral genome, (b) a nucleic acid sequence coding for TNF, and (c) a radiation inducible promoter operably linked to the nucleic acid sequence coding for TNF. This invention also provides an adenoviral vector comprising (a) an adenoviral genome deficient in the E4 region of the adenoviral genome, (b) a nucleic acid sequence coding for TNF, and (c) a spacer element of at least 15 base pairs in the E4 region of the adenoviral genome. A method of producing an adenoviral vector and a method of treating a tumor or cancer in a host comprising administering an anti-cancer or anti-tumor effective amount of the adenoviral vector of the present invention also is provided.
Abstract:
The invention provides adenoviral coat proteins comprising various non-native ligands. Further, the present invention provides an adenoviral vector that elicits less reticulo-endothelial system (RES) clearance in a host animal than a corresponding wild-type adenovirus. Also provided by the invention is a system comprising a cell having a non-native cell-surface receptor and a virus having a non-native ligand, wherein the non-native ligand of the virus binds the non-native cell-surface receptor of the cell. Using this system, a virus can be propagated. Further provided by the invention is a method of controlled gene expression utilizing selectively replication competence, a method of assaying for gene function, a method of isolating a nucleic acid, and a method of identifying functionally related coding sequences. Additionally, the invention provides a cell-surface receptor, which facilitates internalization.
Abstract:
The invention provides cells, particularly NCI-H460 cells and Calu-1 cells, for the propagation of replication-deficient adenoviral vectors. The cells are lung carcinomas with either a wild-type p53 gene or a heterozygous K-ras mutation. The cells comprise at least one adenoviral nucleic acid sequence, which upon expression produces a gene product that complements for at least one essential gene function of one or more regions of an adenoviral genome so as to propagate a replication-deficient adenoviral vector comprising an adenoviral genome deficient in the at least one essential gene function of the one or more regions when present in the cell.
Abstract:
The present invention provides a recombinant adenovirus comprising coat proteins that lack native binding. In particular, the present invention provides a recombinant adenovirus comprising a penton base protein and a fiber protein, wherein the penton base protein and the fiber protein lack native binding. The present invention further provides a recombinant adenovirus comprising (a) a penton base protein that lacks native binding and (b) a nonnative amino acid sequence that binds a cell-surface binding site.
Abstract:
The present invention provides a chimeric adenovirus fiber protein, which differs from the wild-type coat protein by the introduction of a nonnative amino acid sequence in a conformationally-restrained manner. Such a chimeric adenovirus fiber protein according to the invention is able to direct entry into cells of a vector comprising the chimeric fiber protein that is more efficient than entry into cells of a vector that is identical except for comprising a wild-type adenovirus fiber protein rather than the chimeric adenovirus fiber protein. The nonnative amino acid sequences encodes a peptide motif that comprises an epitope for an antibody, or a ligand for a cell surface receptor, that can be employed in cell targeting. The present invention also pertains to vectors comprising such a chimeric adenovirus fiber protein, and to methods of using such vectors.
Abstract:
The present invention provides multiply deficient adenoviral vectors and complementing cell lines. Also provided are recombinants of the multiply deficient adenoviral vectors and a therapeutic method, particularly relating to gene therapy, vaccination, and the like, involving the use of such recombinants.