摘要:
Techniques and structures are disclosed for a processor supporting checkpointing to operate effectively in scouting mode while a maximum number of supported checkpoints are active. Operation in scouting mode may include using bypass logic and a set of register storage locations to store and/or forward in-flight instruction results that were calculated during scouting mode. These forwarded results may be used during scouting mode to calculate memory load addresses for yet other in-flight instructions, and the processor may accordingly cause data to be prefetched from these calculated memory load addresses. The set of register storage locations may comprise a working register file or an active portion of a multiported register file.
摘要:
One embodiment of the present invention provides a system that counts speculatively-executed instructions for performance analysis purposes. During operation, the system counts instructions which are normally executed during a normal-execution mode. Next, the system enters a speculative-execution mode wherein instructions are speculatively executed without being committed to the architectural state of the processor. During the speculative-execution mode, the system counts the speculatively-executed instructions in a manner that enables the count of speculatively-executed instructions to be reset if the speculative execution fails.
摘要:
One embodiment of the present invention provides a system which avoids a live-lock state in a processor that supports speculative-execution. The system starts by issuing instructions for execution in program order during execution of a program in a normal-execution mode. Upon encountering a launch condition during the execution of an instruction (a “launch instruction”) which causes the processor to enter a speculative-execution mode, the system checks status indicators associated with a forward progress buffer. If the status indicators indicate that the forward progress buffer contains data for the launch instruction, the system resumes normal-execution mode. Upon resumption of normal-execution mode, the system retrieves the data from a data field contained in the forward progress buffer and executes the launch instruction using the retrieved data as input data for the launch instruction. The system next deasserts the status indicators. The system then continues to issue instructions for execution in program order in normal-execution mode. Using the forward progress buffer in this way prevents the processor from entering a potential live-lock state.
摘要:
One embodiment of the present invention provides a system that reports reasons for failure during transactional execution. During operation, the system transactionally executes a block of instructions in a program. If the transactional execution of the block of instructions completes successfully, the system commits changes made during the transactional execution, and resumes normal non-transactional execution of the program past the block of instructions. Otherwise, if transactional execution of the block of instructions fails, the system discards changes made during the transactional execution, and records failure information indicating why the transactional execution failed.
摘要:
Embodiments of the present invention provide a system that replaces an entry in a least-recently-used way in a skewed-associative cache. The system starts by receiving a cache line address. The system then generates two or more indices using the cache line address. Next, the system generates two or more intermediate indices using the two or more indices. The system then uses at least one of the two or more indices or the two or more intermediate indices to perform a lookup in one or more lookup tables, wherein the lookup returns a value which identifies a least-recently-used way. Next, the system replaces the entry in the least-recently-used way.
摘要:
One embodiment of the present invention provides a system for measuring processor performance during speculative-execution. The system starts by executing instructions in a normal-execution mode. The system then enters a speculative-execution episode wherein instructions are speculatively executed without being committed to the architectural state of the processor. While entering the speculative-execution episode the system enables a speculative execution monitor. The system then uses the speculative execution monitor to monitor instructions during the speculative-execution episode to record data values relating to the speculative-execution episode. Upon returning to normal-execution mode, the system disables the speculative execution monitor. The data values recorded by the speculative execution monitor facilitate measuring processor performance during speculative execution.
摘要:
One embodiment of the present invention provides a system that reports reasons for failure during transactional execution. During operation, the system transactionally executes a block of instructions in a program. If the transactional execution of the block of instructions completes successfully, the system commits changes made during the transactional execution, and resumes normal non-transactional execution of the program past the block of instructions. Otherwise, if transactional execution of the block of instructions fails, the system discards changes made during the transactional execution, and records failure information indicating why the transactional execution failed.
摘要:
One embodiment of the present invention provides a system that dynamically adjusts the aggressiveness of an execute-ahead processor. If a data-dependent stall condition is encountered during program execution, the system enters an execute-ahead mode, wherein instructions that cannot be executed because of the unresolved data dependency are deferred, and other non-deferred instructions are executed in program order. If a non-data-dependent stall condition is encountered during execute-ahead mode, the system enters a scout mode, wherein instructions are speculatively executed to prefetch future loads, but results are not committed to the architectural state of the execute-ahead processor. On the other hand, if an unresolved data dependency is resolved during the execute-ahead mode, enters a deferred mode and executes deferred instructions. During this deferred mode, if some instructions are deferred again, the system determines whether to resume execution in the execute-ahead mode. If it determines to do so, the system resumes execution in the execute-ahead mode, and otherwise resumes execution in a non-aggressive mode.
摘要:
Techniques are disclosed relating to reducing the latency of restarting a pipeline in a processor that implements scouting. In one embodiment, the processor may reduce pipeline restart latency using two instruction fetch units that are configured to fetch and re-fetch instructions in parallel with one another. In some embodiments, the processor may reduce pipeline restart latency by initiating re-fetching instructions in response to determining that a commit operation is to be attempted with respect to one or more deferred instructions. In other embodiments, the processor may reduce pipeline restart latency by initiating re-fetching instructions in response to receiving an indication that a request for a set of data has been received by a cache, where the indication is sent by the cache before determining whether the data is present in the cache or not.
摘要:
Techniques are disclosed relating to reducing the latency of restarting a pipeline in a processor that implements scouting. In one embodiment, the processor may reduce pipeline restart latency using two instruction fetch units that are configured to fetch and re-fetch instructions in parallel with one another. In some embodiments, the processor may reduce pipeline restart latency by initiating re-fetching instructions in response to determining that a commit operation is to be attempted with respect to one or more deferred instructions. In other embodiments, the processor may reduce pipeline restart latency by initiating re-fetching instructions in response to receiving an indication that a request for a set of data has been received by a cache, where the indication is sent by the cache before determining whether the data is present in the cache or not.