Abstract:
The wavelength tunable laser includes a thermo-electric cooler (TEC), a distributed feedback portion, and a semiconductor optical amplifier (SOA). The distributed feedback portion is disposed on the thermo-electric cooler and has a plurality of distributed feedback (DFB) lasers connected in series. Each DFB laser is configured to output an optical signal within a different temperature dependent tunable range of wavelengths. Therefore, the distributed feedback portion outputs an optical signal from one of the DFB lasers. The SOA is optically connected to the distributed feedback portion. The SOA amplifies and modulates the optical signal outputted from the distributed feedback portion.
Abstract:
Techniques, devices and systems for optical communications based on wavelength division multiplexing (WDM) that use tunable multi-wavelength laser transmitter modules.
Abstract:
Techniques, devices and systems for optical communications based on wavelength division multiplexing (WDM) that use tunable multi-wavelength laser transmitter modules.
Abstract:
This disclosure provides systems, methods, and apparatus for mitigating the effects of interference signals on optical signals received at a direct-detection optical receivers. The optical receivers are capable of attenuating interference noise signals resulting from the interference between a transmitted optical signal transmitted from a transmitter to the optical receiver and one or more additional signals received at the optical receiver. The interference can be due to multi-path interference or due to in-band interference. The receivers include a tunable filter for filtering the received optical signal to remove the interference. A frequency offset module processes the received optical signal to determine a frequency offset indicative of the difference between the carrier frequencies of a modulated optical signal and an interference optical signal. The offset frequency and a bandwidth determined by the frequency offset module can be used to adjust the tunable filter to remove the interference signal from the received signal.
Abstract:
Systems and methods for increasing bandwidth in a computer network are provided. A computer network can include a first lower level switch having a first port and a second port. The computer network can include a second lower level switch having a first port and a second port. The computer network can include an upper level switch having respective ports directly coupled to ports of the first and second lower level switches. A third port of the upper level switch can couple to a first port of a passive optical splitter. The passive optical splitter can have second and third ports coupled to respective ports of the first and second lower level switches. The passive optical splitter can be configured to transmit signals received at its first port as output signals on both of its second and third ports.
Abstract:
The disclosure describes implementations of an apparatus including a plurality of racks, wherein each rack houses a plurality of networking devices and each networking device includes a communication port. An optical circuit switch can be coupled to each of the plurality of communication ports in one or more of the plurality of racks, and a plurality of top-of-rack (TOR) switches can be coupled to the optical circuit switch. Other implementations are disclosed and claimed.
Abstract:
Techniques, devices and systems for optical communications based on wavelength division multiplexing (WDM) that use tunable multi-wavelength laser transmitter modules.
Abstract:
Techniques, devices and systems for optical communications based on wavelength division multiplexing (WDM) that use tunable multi-wavelength laser transmitter modules.