Abstract:
Embodiments of the present invention provide an interference elimination method, an interference elimination device and a communication system, which are used to implement the effective elimination of signal interference of a receiving end. The method includes: according to a received signal, reconstructing a main cell signal, obtaining the reconstructed main cell signal, and subtracting the reconstructed main cell signal from the received signal, so as to obtain a first residual signal; according to the first residual signal, reconstructing an interference cell signal, and obtaining the reconstructed interference cell signal; and according to the received signal and the reconstructed interference cell signal, obtaining an interference-eliminated main cell signal. According to the interference elimination method, the interference elimination device and the communication system in the embodiments of the present invention, the interference elimination may be performed on the received signal effectively.
Abstract:
A scheduling information transmission method, device, and communications system are provided. The method includes: generating a channel attribute parameter and a serving grant (SG), where the channel attribute parameter and the SG are used for data scheduling of uplink multiple input multiple output (MIMO); and delivering the channel attribute parameter and the SG to a user equipment (UE) through a target channel, where the channel attribute parameter is used by the UE to determine a primary-stream enhanced dedicated channel transport format combination indicator (E-TFCI) and a secondary-stream E-TFCI. In the scheduling information transmission method, device, and communications system that are provided in embodiments of the present invention, the determined E-TFCIs can better adapt to different channel conditions, which improves data transmission performance.
Abstract:
Receiver and method in a receiver, for iterative channel estimation and data decoding of signals received from a radio network node, located in a wireless communication network. The method comprises detecting a signal of the radio network node, performing channel estimation of the detected signal, based on iterative application of a Space Alternating Generalised Expectation and maximisation, SAGE, algorithm, determining a channel/link quality, based on the performed channel estimation and the estimated channel parameters, selecting Multiple-Input and Multiple-Output, MIMO, detector, based on the determined channel quality, determining to enable and/or disable, respectively, soft-Iterative Channel Estimation, soft-ICE, based on the determined channel quality, and iterating the performed channel estimation for a predetermined number of times.
Abstract:
The present invention discloses a multi-carrier receiving device and method. The multi-carrier receiving device includes an antenna, a splitter, a plurality of analog extraction modules, a combiner, an analog-to-digital converter, and a plurality of digital extraction modules, where input ends of the plurality of analog extraction modules are connected to an output end of the splitter; an input end of the combiner is connected to output ends of the plurality of analog extraction modules, and an output end of the combiner is connected to an input end of the analog-to-digital converter; an output end of the analog-to-digital converter is connected to each of the plurality of digital extraction modules; and the plurality of digital extraction modules extracts a single-carrier digital signal from a digital signal obtained after analog-to-digital conversion.
Abstract:
A method and apparatus is provided. The method includes: obtaining downlink control information, wherein the downlink control information is used to schedule downlink data, and the downlink control information carries time information indicating a time at which uplink information is sent; obtaining, through a system message or radio resource control signaling or a resource of a physical random access channel, information indicating a duration for sending the uplink information; receiving the downlink data; and sending the uplink information according to the time information and the information indicating the duration, wherein the uplink information is used to indicates whether the downlink data is correctly received.
Abstract:
A data transmission method in the present application includes: determining, by first UE, a frame structure in a time unit, where the frame structure indicates that N type-1 OFDM symbols and a GP are included in the time unit, and a subcarrier spacing of each type-1 OFDM symbol is Δf1. Therefore, according to the data transmission method and the user equipment in embodiments of the present application, a frame structure in a time unit is determined. The frame structure indicates that N type-1 OFDM symbols and a GP are included in the time unit, and a subcarrier spacing of each type-1 OFDM symbol is Δf1. Therefore, when an NB-IOT system is deployed in an LTE system in an embedded manner, and when NB-IOT UE is sending data, a channel resource of the legacy LTE system can be adequately utilized, and a conflict with a legacy LTE SRS can be avoided.
Abstract:
A method and an apparatus for selecting a transport format are provided. The method includes: receiving a transport format parameter of a user equipment sent by a base station, where the transport format parameter of the user equipment includes a primary stream grant value and an association between the primary stream and the secondary stream; determining a maximum transport block length of the primary stream according to a preset value of the maximum transmit power of the user equipment and the association between the primary stream and the secondary stream; determining an actual transport block length of the primary stream according to a size relationship between a theoretical transport block length of the primary stream and the maximum transport block length; and determining a transport block length of the secondary stream.
Abstract:
The present invention relates to an equalizing method in a receiver node of a cellular wireless communication system, the method comprising: receiving at least one radio signal comprising a plurality of resource elements; obtaining interference information associated with the plurality of resource elements; extracting resource elements from the plurality of resource elements carrying data into a first set based on the interference information; dividing the resource elements in the first set into one or more sub-sets each comprising T number of resource elements; filtering the resource elements in said one or more sub-sets by applying a balanced whitening and energy focusing filter W so as to obtain filtered resource elements y; and equalizing the filtered resource elements y. The invention also relates to a receive device, a computer program, and a computer program product.
Abstract:
A method for transmitting data streams in a multiple input multiple output (MIMO) system is provided, where each data stream is mapped to multiple layers in an MIMO channel space for transmission, and the method includes: performing inter-layer interleaving for N data streams to obtain N interleaved data streams; mapping the N interleaved data streams respectively to N layers in the MIMO channel space, and transmitting the N interleaved data streams that are mapped to the N layers. By using the method of the present invention, a combined CQI can be used in a better way to improve MIMO transmission performance. Further, an impact of inter-layer interference is canceled by using an interference cancellation technology (for example, an SIC technology) based on the inter-layer interleaving.
Abstract:
A method for transmitting data streams in a multiple input multiple output (MIMO) system is provided, where each data stream is mapped to multiple layers in an MIMO channel space for transmission, and the method includes: performing inter-layer interleaving for N data streams to obtain N interleaved data streams; mapping the N interleaved data streams respectively to N layers in the MIMO channel space, and transmitting the N interleaved data streams that are mapped to the N layers. By using the method of the present invention, a combined CQI can be used in a better way to improve MIMO transmission performance. Further, an impact of inter-layer interference is canceled by using an interference cancellation technology (for example, an SIC technology) based on the inter-layer interleaving.