Abstract:
Embodiments are provided for uplink measurement based mechanism and control using user equipment (UE) centric sounding signals. The mechanism provides an alternative to DL-measurement dominated system control. Based on UL-measurements at TPs, the network obtains knowledge of users' channel and timing information, traffic, and interference, and is thus able to perform better control, including TP and UE clustering and optimization, and power control and link adaptation. In an embodiment method, a TP receives one-to-one mapping information indicating a plurality of UE IDs and a plurality of sounding channels assigned to the corresponding UE IDs. When the TP detects a sounding reference signal (SRS) from a UE, the TP is able to identify the UE using the detected SRS and the one-to-one mapping information. The TP then obtains measurement information for the identified UE, enabling better control and communications for uplink and downlink transmissions between multiple TPs and the UE.
Abstract:
System and method embodiments are provided for providing customized virtual networks based on SONAC. In an embodiment, a network management entity for providing a customized VN includes a SONAC module executed by a computing device that is connected to a wireless network, the SONAC module configured to receive service requirement data from the wireless network and create a service customized VN according to the service requirement data, the service requirement data describing one or more service requirements, wherein the SONAC module comprises an interface to interact with: an SDT component, the SDT component used by the SONAC module to determine a service customized logical topology; an SDRA component that maps the logical topology to physical network resources within the wireless network; and a SDP component that determines an end-to-end data transport protocol for communication between a first device and a second device via the wireless network.
Abstract:
There is provided a method and network management function for allocating a slice instance of a communications network. The method includes obtaining, by a management function, requirements for the slice instance and checking, by the management function, a feasibility of the slice instance requirements in view of one or more of network resources and network capabilities. The method further includes preparing, by the management function, a network environment for the slice instance in view of the slice instance requirements and commissioning, by the management function, the slice instance. The method may additionally or alternatively include terminating, modifying and/or deactivating the slice instance.
Abstract:
A communication service manager (CSM) apparatus for monitoring a communication network is provided. The CSM receives configuration instruction message from a higher-level device, and creates or modifies a set of tasks based on the configuration instruction message. The CSM is thus configured to interact with data provider devices to obtain specific information, process the information, and report the results of the processing operations toward a specified device or database. The data provider devices monitor network operations and may include network functions and data analytics manager (DAM) functions. A format for configuration instruction messages, for configuring the CSM, is also provided.
Abstract:
Embodiments are provided for uplink measurement based mechanism and control using user equipment (UE) centric sounding signals. The mechanism provides an alternative to DL-measurement dominated system control. Based on UL-measurements at TPs, the network obtains knowledge of users' channel and timing information, traffic, and interference, and is thus able to perform better control, including TP and UE clustering and optimization, and power control and link adaptation. In an embodiment method, a TP receives one-to-one mapping information indicating a plurality of UE IDs and a plurality of sounding channels assigned to the corresponding UE IDs. When the TP detects a sounding reference signal (SRS) from a UE, the TP is able to identify the UE using the detected SRS and the one-to-one mapping information. The TP then obtains measurement information for the identified UE, enabling better control and communications for uplink and downlink transmissions between multiple TPs and the UE.
Abstract:
A method for agile wireless access network includes determining, by a network controller, capabilities and neighborhood relations of radio nodes in the radio access network. The network controller then configures a backhaul network infrastructure for the radio access network in accordance with the capabilities and the neighborhood relations of the radio nodes.
Abstract:
The present invention facilitates efficient and effective power management for wireless telecommunications. In one embodiment, presented approaches enable power savings in devices with a limited power supply (e.g., mobile devices operating on battery power supply, photocell, etc.). In one exemplary implementation, power smart channels facilitate power conservation. Power smart channel communications can be transmitted at lower power levels than conventional or normal channel communications. Presented power smart channel methods and systems can be implemented in a wireless cellular communication environment where power smart channels are established and used in accordance with various aspects and configurations of the components (e.g., location, remaining battery charge, multiple resource bands, etc.) in the wireless cellular communication environment.
Abstract:
In one embodiment, a method for a method of estimating an effective bandwidth of a traffic source includes obtaining a first traffic pattern from a first traffic source. Also, the method includes setting a first effective bandwidth between a mean data rate of the first traffic source and a peak data rate of the first traffic source. Additionally, the method includes determining a first outage rate of the first traffic source in accordance with the first traffic pattern and the first effective bandwidth.
Abstract:
Embodiments are provided for uplink measurement based mechanism and control using user equipment (UE) centric sounding signals. The mechanism provides an alternative to DL-measurement dominated system control. Based on UL-measurements at TPs, the network obtains knowledge of users' channel and timing information, traffic, and interference, and is thus able to perform better control, including TP and UE clustering and optimization, and power control and link adaptation. In an embodiment method, a TP receives one-to-one mapping information indicating a plurality of UE IDs and a plurality of sounding channels assigned to the corresponding UE IDs. When the TP detects a sounding reference signal (SRS) from a UE, the TP is able to identify the UE using the detected SRS and the one-to-one mapping information. The TP then obtains measurement information for the identified UE, enabling better control and communications for uplink and downlink transmissions between multiple TPs and the UE.
Abstract:
Embodiments are provided for uplink measurement based mechanism and control using user equipment (UE) centric sounding signals. The mechanism provides an alternative to DL-measurement dominated system control. Based on UL-measurements at TPs, the network obtains knowledge of users' channel and timing information, traffic, and interference, and is thus able to perform better control, including TP and UE clustering and optimization, and power control and link adaptation. In an embodiment method, a TP receives one-to-one mapping information indicating a plurality of UE IDs and a plurality of sounding channels assigned to the corresponding UE IDs. When the TP detects a sounding reference signal (SRS) from a UE, the TP is able to identify the UE using the detected SRS and the one-to-one mapping information. The TP then obtains measurement information for the identified UE, enabling better control and communications for uplink and downlink transmissions between multiple TPs and the UE.