摘要:
In a powered actuator for supplying torque, joint equilibrium, and/or impedance to a joint, a motor is directly coupled to a low-reduction ratio transmission, e.g., a transmission having a gear ratio less than about 80 to 1. The motor has a low dissipation constant, e.g., less than about 50 W/(Nm)2. The transmission is serially connected to an elastic element that is also coupled to the joint, thereby supplying torque, joint equilibrium, and/or impedance to the joint while minimizing the power consumption and/or acoustic noise of the actuator.
摘要:
In some embodiments of a prosthetic or orthotic ankle/foot, a prediction is made of what the walking speed will be during an upcoming step. When the predicted walking speed is slow, the characteristics of the apparatus are then modified so that less net-work that is performed during that step (as compared to when the predicted walking speed is fast). This may be implemented using one sensor from which the walking speed can be predicted, and a second sensor from which ankle torque can be determined. A controller receives inputs from those sensors, and controls a motor's torque so that the torque for slow walking speeds is lower than the torque for fast walking speeds. This reduces the work performed by the actuator over a gait cycle and the peak actuator power delivered during the gait cycle. In some embodiments, a series elastic element is connected in series with a motor that can drive the ankle, and at least one sensor is provided with an output from which a deflection of the series elastic element can be determined. A controller determines a desired torque based on the output, and controls the motor's torque based on the determined desired torque.
摘要:
An exoskeleton worn by a human user consists of a rigid pelvic harness, worn about the waist of the user, and exoskeleton leg structures, each of which extends downwardly alongside one of the human user's legs. The leg structures include hip, knee, and ankle joints connected by adjustable length thigh and shin members. The hip joint that attaches the thigh structure to the pelvic harness includes a passive spring or an active actuator to assist in lifting the exoskeleton and the human user with respect to the ground surface upon which the user is walking and to propel the exoskeleton and human user forward. A controllable damper operatively arrests the movement of the knee joint at controllable times during the walking cycle and a spring located at the ankle and foot member stores and releases energy during walking.
摘要:
The invention relates to an automated speed-adaptive and patient-adaptive control scheme and system for a knee prosthesis. The control scheme and system utilizes sensory information measured local to the prosthesis to automatically adjust stance and swing phase knee resistances to a particular wearer under a wide variety of locomotory activities. Advantageously, no patient-specific information needs to be pre-programmed into the prosthetic knee by a prosthetist or the patient. The system is able to adapt to various types of disturbances once the patient leaves the prosthetist's facility because it is patient-adaptive and speed-adaptive.
摘要:
The invention relates to an automated speed-adaptive and patient-adaptive control scheme and system for a knee prosthesis. The control scheme and system utilizes sensory information measured local to the prosthesis to automatically adjust stance and swing phase knee resistances to a particular wearer under a wide variety of locomotory activities. Advantageously, no patient-specific information needs to be pre-programmed into the prosthetic knee by a prosthetist or the patient. The system is able to adapt to various types of disturbances once the patient leaves the prosthetist's facility because it is patient-adaptive and speed-adaptive.
摘要:
The invention relates to an automated speed-adaptive and patient-adaptive control scheme and system for a knee prosthesis. The control scheme and system utilizes sensory information measured local to the prosthesis to automatically adjust stance and swing phase knee resistances to a particular wearer under a wide variety of locomotory activities. Advantageously, no patient-specific information needs to be pre-programmed into the prosthetic knee by a prosthetist or the patient. The system is able to adapt to various types of disturbances once the patient leaves the prosthetist's facility because it is patient-adaptive and speed-adaptive.
摘要:
A midsole system for a running shoe or foot prosthesis have a sole spring, a heel spring and/or a forefoot spring stores energy of foot impact and releases it during the running cycle. A preferred embodiment provides bending beam sole systems for shoes or foot prostheses comprising a bending beam heel spring, a bending beam forefoot spring, a two coupled spring sole system, and a three coupled spring sole system. The sole systems of this invention maximize stability, cushioning, and walking or running economy.
摘要:
A powered device augments a joint function of a human during a gait cycle using a powered actuator that supplies an augmentation torque, an impedance, or both to a joint. A controller estimates terrain slope and modulates the augmentation torque and the impedance according to a phase of the gait cycle and the estimated terrain slope to provide at least a biomimetic response. The controller may also modulate a joint equilibrium. Accordingly, the device is capable of normalizing or augmenting human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain, and can be used, for example, as a knee orthosis, prosthesis, or exoskeleton.
摘要:
Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
摘要:
A powered ankle-foot prosthesis, capable of providing human-like power at terminal stance that increase amputees metabolic walking economy compared to a conventional passive-elastic prosthesis. The powered prosthesis comprises a unidirectional spring, configured in parallel with a force-controllable actuator with series elasticity. The prosthesis is controlled to deliver the high mechanical power and net positive work observed in normal human walking.