Abstract:
A method for forming a microelectromechanical device may provide forming a first layer at least one of in or over a semiconductor carrier; forming a second layer at least one of in or over at least a central region of the first layer, such that a peripheral region of the first layer is at least partially free of the second layer; removing material under at least a central region of the second layer to release at least one of the central region of the second layer or a central region of the first layer; and/or removing material under at least the peripheral region of the first layer to such that the second layer is supported by the semiconductor carrier via the first layer.
Abstract:
In one embodiment, a method of forming a semiconductor device includes forming a first inductor coil within and/or over a substrate. The first inductor coil is formed adjacent a top side of the substrate. First trenches are formed within the substrate adjacent the first inductor coil. The first trenches are filled at least partially with a magnetic fill material. At least a first portion of the substrate underlying the first inductor coil is thinned. A backside magnetic layer is formed under the first portion of the substrate. The backside magnetic layer and the magnetic fill material form at least a part of a magnetic core region of the first inductor coil.
Abstract:
In one embodiment, a method of forming a semiconductor device includes forming a first inductor coil within and/or over a substrate. The first inductor coil is formed adjacent a top side of the substrate. First trenches are formed within the substrate adjacent the first inductor coil. The first trenches are filled at least partially with a magnetic fill material. At least a first portion of the substrate underlying the first inductor coil is thinned. A backside magnetic layer is formed under the first portion of the substrate. The backside magnetic layer and the magnetic fill material form at least a part of a magnetic core region of the first inductor coil.
Abstract:
A MEMS pump includes a basis structure, a membrane structure opposing the basis structure and being deflectable parallel to a surface normal of the basis structure and includes a pump chamber between the basis structure and the membrane structure wherein a volume of the pump chamber is based on a position of the membrane structure with respect to the basis structure. The MEMS pump includes a passage for letting a fluid pass into the pump chamber or exit the pump chamber, wherein the passage is arranged in-plane with respect to the pump chamber. The MEMS pump includes a valve structure coupled to the passage for connecting, in a first state, the passage to a first outer volume and for connecting, in a second state, the passage to a second outer volume.
Abstract:
A system for measuring gas concentration includes a package having a cavity and a port, a photoacoustic gas sensor device within the package, and a Micro Electro Mechanical System (“MEMS”) valve separate from the photoacoustic gas sensor device placed over the port of the package and to allow ambient gas diffusion into the cavity in a first mode of operation, and to prevent ambient gas diffusion into the cavity and to acoustically isolate the cavity in a second mode of operation.
Abstract:
A system for measuring gas concentration includes a package having a cavity and a port, a photoacoustic gas sensor device within the package, and a Micro Electro Mechanical System (“MEMS”) valve separate from the photoacoustic gas sensor device placed over the port of the package and to allow ambient gas diffusion into the cavity in a first mode of operation, and to prevent ambient gas diffusion into the cavity and to acoustically isolate the cavity in a second mode of operation.
Abstract:
In one embodiment, a method of manufacturing a semiconductor device includes oxidizing a substrate to form local oxide regions that extend above a top surface of the substrate. A membrane layer is formed over the local oxide regions and the top surface of the substrate. A portion of the substrate under the membrane layer is removed. The local oxide regions under the membrane layer are removed.
Abstract:
In one embodiment, a method of manufacturing a semiconductor device includes oxidizing a substrate to form local oxide regions that extend above a top surface of the substrate. A membrane layer is formed over the local oxide regions and the top surface of the substrate. A portion of the substrate under the membrane layer is removed. The local oxide regions under the membrane layer is removed.
Abstract:
According to an embodiment, a microfabricated structure includes a cavity disposed in a substrate, a first clamping layer overlying the substrate, a deflectable membrane overlying the first clamping layer, and a second clamping layer overlying the deflectable membrane. A portion of the second clamping layer overlaps the cavity.
Abstract:
According to an embodiment, a microfabricated structure includes a cavity disposed in a substrate, a first clamping layer overlying the substrate, a deflectable membrane overlying the first clamping layer, and a second clamping layer overlying the deflectable membrane. A portion of the second clamping layer overlaps the cavity.