Abstract:
Embodiments of methods and apparatus for determining and/or quantizing a beamforming matrix are disclosed. In some embodiments, the determining and/or quantizing of the beamforming matrix may include the use of a base codebook and a differential codebook. Additional variants and embodiments are also disclosed.
Abstract:
Technology for selecting physical resource blocks (PRB) for cell-specific reference signal (CRS) transmission for a new carrier type (NCT) is disclosed. In an example, device operable in an evolved Node B (eNB) to select physical resource blocks (PRB) for cell-specific reference signal (CRS) transmission for a new carrier type (NCT) can include computer circuitry configured to: Determine a frequency bandwidth for the NCT; and select a CRS pattern of PRBs for a transmission of the CRS in the frequency bandwidth, wherein the frequency bandwidth includes PRBs with CRS and PRBs without CRS.
Abstract:
A wireless communication device, method and system. The device includes a memory, and a processing circuitry coupled to the memory. The processing circuitry is to: decode at least one signal field portion of a signal field of a Physical Layer Convergence Protocol (PLCP) Data Unit (PPDU) received over a bonded channel, the bonded channel comprising a plurality of subchannels including a punctured subchannel, the signal field portion on at least one unpunctured subchannel of the plurality of subchannels; determine, from the at least one signal field portion, information on a resource allocation for the device, the resource allocation indicating at least one resource unit (RU) used in a data field of the PPDU for the device; and decode a data field portion of the data field of the PPDU, the data field portion received on a part of the punctured subchannel based on the resource allocation.
Abstract:
This disclosure describes systems, methods, and devices related to long training field (LTF) sequence security protection. A device may determine a null data packet (NDP) frame comprising one or more fields. The device may determine a first long training field (LTF) and a second LTF, the first LTF and the second LTF being associated with a first frequency band of the NDP frame, wherein time domain LTF symbols of first LTF and the second LTF are generated using different LTF sequences. The device may determine a third LTF and a fourth LTF, the third LTF and the fourth LTF being associated with the a second frequency band of the NDP frame, wherein time domain LTF symbols of third LTF and the fourth LTF are generated using different LTF sequences. The device may cause to send the NDP frame to an initiating or a responding device. The device may cause to send a location measurement report (LMR) frame to the initiating or the responding device, wherein the LMR comprises timing information associated with the first frequency band and the second frequency band.
Abstract:
Methods, apparatuses, and computer readable media for report identification and power control for ranging in a wireless network are disclosed. An apparatus of a responding station (RSTA) is disclosed, where the apparatus comprises processing circuitry configured to perform ranging with a initiating stations (ISTAs) and maintain a separate sounding dialogue token for each of the ISTAs and transmit a corresponding sounding dialogue token for a ISTA in a trigger frame for ranging and sounding or a null data packet announcement (NDPA) frame, and in a responding to initiating location measurement report. Apparatuses of RSTAs and ISTAS are disclosed that perform power control management during non-trigger-based ranging.
Abstract:
This disclosure describes systems, methods, and devices related to long training field (LTF) sequence security protection. A device may determine a null data packet (NDP) frame comprising one or more fields. The device may determine a first long training field (LTF) and a second LTF, the first LTF and the second LTF being associated with a first frequency band of the NDP frame, wherein time domain LTF symbols of first LTF and the second LTF are generated using different LTF sequences. The device may determine a third LTF and a fourth LTF, the third LTF and the fourth LTF being associated with the a second frequency band of the NDP frame, wherein time domain LTF symbols of third LTF and the fourth LTF are generated using different LTF sequences. The device may cause to send the NDP frame to an initiating or a responding device. The device may cause to send a location measurement report (LMR) frame to the initiating or the responding device, wherein the LMR comprises timing information associated with the first frequency band and the second frequency band.
Abstract:
Methods, apparatuses, and computer readable media for report identification and power control for ranging in a wireless network are disclosed. An apparatus of a responding station (RSTA) is disclosed, where the apparatus comprises processing circuitry configured to perform ranging with a initiating stations (ISTAs) and maintain a separate sounding dialogue token for each of the ISTAs and transmit a corresponding sounding dialogue token for a ISTA in a trigger frame for ranging and sounding or a null data packet announcement (NDPA) frame, and in a responding to initiating location measurement report. Apparatuses of RSTAs and ISTAS are disclosed that perform power control management during non-trigger-based ranging.
Abstract:
An apparatus and method for flexible adjustment of the uplink-downlink ratio configuration for each enhanced node B (eNodeB) within a wireless communications network is disclosed herein. In one embodiment, a given eNodeB is configured to determine a current or subsequent uplink-downlink ratio configuration for a pre-determined time period. The determined current or subsequent uplink-downlink ratio configuration is encoded into a special physical downlink control channel (PDCCH), the special PDCCH included in at least one radio frame according to the pre-determined time period. The radio frame including the special PDCCH is transmitted to user equipment served by the given eNodeB.
Abstract:
Methods, systems, and storage media are described for the indication of frequency hopping and downlink (DL)/uplink (UL) configuration in narrowband Internet-of-Things (NB-IoT) systems. Other embodiments may be described and/or claimed.
Abstract:
Embodiments relate to systems, methods, and computer readable media to enable a millimeter wave capable small cell (MCSC) devices to receive a handover of a user equipment from a universal mobile telecommunications system terrestrial radio access node B (eNB.) In particular, systems and methods are described for user equipment (UE) association with a MCSC operating as a booster for an eNB, including identification of and communication on preferred cell sector between the UE and the MCSC.