Abstract:
Embodiments of the present invention are directed to nitride-based, red-emitting phosphors in red, green, and blue (RGB) lighting systems, which in turn may be used in backlighting displays and warm white-light applications. In particular embodiments, the red-emitting phosphor is based on CaAlSiN3 type compounds activated with divalent europium. In one embodiment, the nitride-based, red emitting compound contains a solid solution of calcium and strontium compounds (Ca,Sr)AlSiN3:Eu2+, wherein the impurity oxygen content is less than about 2 percent by weight. In another embodiment, the (Ca,Sr)AlSiN3:Eu2+ compounds further contains a halogen in an amount ranging from about zero to about 2 atomic percent, where the halogen may be fluorine (F), chlorine (Cl), or any combination thereof. In one embodiment at least half of the halogen is distributed on 2-fold coordinated nitrogen (N2) sites relative to 3-fold coordinated nitrogen (N3) sites.
Abstract:
A solid-state light emitting device comprises a solid-state light emitter (LED) operable to generate excitation light and a wavelength conversion component including a mixture of particles of a photoluminescence material and particles of a light reflective material. In operation the phosphor absorbs at least a portion of the excitation light and emits light of a different color. The emission product of the device comprises the combined light generated by the LED and the phosphor. The wavelength conversion component can be light transmissive and comprise a light transmissive substrate on which the mixture of phosphor and reflective materials is provided as a layer or homogeneously distributed throughout the volume of the substrate. Alternatively the wavelength conversion component can be light reflective with the mixture of phosphor and light reflective materials being provided as a layer on the light reflective surface. A wavelength conversion component, light emitting sign and light emitting signage surface are also disclosed.
Abstract:
A solid-state lamp comprising: an array of solid-state excitation sources and a photoluminescence wavelength conversion component comprising a layer of photoluminescence material and a coupling optic. The layer of photoluminescence material is remote to the excitation sources and the coupling optic is disposed between the excitation sources and the layer of photoluminescence material. The ratio of the photoluminescence material surface area of the layer of the photoluminescence material to the excitation source surface area for the array of solid-state excitation sources is at least 3 to 1.
Abstract:
A display backlight, comprises: an excitation source, LED (146), for generating blue excitation light (148) with a peak emission wavelength in a wavelength range 445 nm to 465 nm; and a photoluminescence wavelength conversion layer (152). The photoluminescence wavelength conversion layer (152) comprises a mixture of a green-emitting photoluminescence material with a peak emission in a wavelength range 530 nm to 545 nm, a red-emitting photoluminescence material with a peak emission in a wavelength range 600 nm to 650 nm and particles of light scattering material.
Abstract:
A display includes a display panel and a backlight. The backlight includes an excitation source that generates blue excitation light with a dominant emission wavelength in a range 445 nm to 465 nm; and a wavelength converting film located remotely to the excitation source and between the excitation source and display panel. The wavelength converting film, in terms of photoluminescence material, includes a manganese-activated fluoride phosphor and a europium activated sulfide phosphor; where the manganese-activated fluoride phosphor receives at least a portion of the blue excitation light and in response emits red light with a peak emission wavelength in a range 610 nm to 650 nm; and where the europium activated sulfide phosphor receives at least a portion of the blue excitation light and in response emits green light having a peak emission wavelength in a range 525 nm to 545 nm; and where the europium activated sulfide phosphor is coated with at least one oxide material.
Abstract:
A white light emitting device includes a solid-state excitation source operable to generate excitation light having a dominant wavelength ranging from 440 nm to 455 nm; a first photoluminescence material which generates light having a peak emission wavelength ranging from 500 nm to 530 nm; and a second photoluminescence material which generates light having a peak emission wavelength ranging from 640 nm to 690 nm, where the device is operable to generate white light with an IEC TM-30 Gamut Index Rg ranging from 105 to 115. The device can be operable to generate white light having an IEC TM-30 Fidelity Index Rf which ranges from 85 to 95 and a sum of Gamut Index Rg and fidelity index Rf is greater than or equal to 195 and less than or equal to 200.
Abstract:
A full spectrum white light emitting device includes photoluminescence materials which generate light with a peak emission wavelength in a range from about 490 nm to about 680 nm; and a broadband solid-state excitation source operable to generate broadband excitation light with a dominant wavelength in a range from about 420 nm to about 480 nm. The device is operable to generate white light with a Correlated Color Temperature in a range from about 1800K to about 6800K, a CRI R9 less than 90, a spectrum whose intensity decreases from its maximum value in the orange to red region of the spectrum to about 50% of the maximum value at a wavelength in a range from about 645 nm to about 695 nm, and over a wavelength range from about 430 nm to about 520 nm, a maximum percentage intensity deviation of light emitted by the device is less than 60% from the intensity of light of at least one of a black-body curve and CIE Standard Illuminant D of the same Correlated Color Temperature.
Abstract:
A white light emitting device includes a solid-state excitation source operable to generate excitation light having a dominant wavelength ranging from 440 nm to 455 nm; a first photoluminescence material which generates light having a peak emission wavelength ranging from 500 nm to 530 nm; and a second photoluminescence material which generates light having a peak emission wavelength ranging from 640 nm to 690 nm, where the device is operable to generate white light with an IEC TM-30 Gamut Index Rg ranging from 105 to 115. vThe device can be operable to generate white light having an IEC TM-30 Fidelity Index Rf which ranges from 85 to 95 and a sum of Gamut Index Rg and fidelity index Rf is greater than or equal to 195 and less than or equal to 200.
Abstract:
A white light photoluminescence wavelength conversion component comprises at least one blue light excitable green to yellow light (510 nm to 570 nm) emitting yttrium aluminum garnet (YAG) type phosphor material and at least one blue light excitable orange to red light (585 nm to 670 nm) emitting organic fluorescent dye.
Abstract:
A photoluminescence sheet comprises a polymer sheet having particles of at least one photoluminescence material homogeneously distributed throughout its volume. The polymer sheet comprises a UV-curable polymer that is partially cured and which is thermally re-flowable before being fully cured by exposure to UV light.