Abstract:
A method of planning a procedure to deploy an interventional instrument comprises receiving a model of an anatomic structure. The anatomic structure includes a plurality of passageways. The method further includes identifying a target structure in the model and receiving information about an operational capability of the interventional instrument within the plurality of passageways. The method further comprises identifying a planned deployment location for positioning a distal tip of the interventional instrument to perform the procedure on the target structure based upon the operational capability of the interventional instrument.
Abstract:
A system for performing an interventional procedure comprises an interventional instrument and a control system. The control system comprises a processor and a memory comprising machine-readable instructions that, when executed by the processor, cause the control system to receive a model of an anatomic structure record a target location for a target structure identified in the model, determine a planned deployment location for the interventional instrument to perform the interventional procedure on the target structure, receive sensor data including an operative image of the target structure from a sensor system, and identify, based on the operative image of the target structure, a revised deployment location for the interventional instrument to perform the interventional procedure on the target structure.
Abstract:
A processing system comprises a processor and a memory having computer readable instructions stored thereon. The computer readable instructions, when executed by the processor, cause the system to receive a reference three-dimensional volumetric representation of a branched anatomical formation in a reference state and obtain a reference tree of nodes and linkages based on the reference three-dimensional volumetric representation. The computer readable instructions also cause the system to obtain a reference three-dimensional geometric model based on the reference tree and detect deformation of the branched anatomical formation due to anatomical motion based on measurements from a shape sensor. The computer readable instructions also cause the system to obtain a deformed tree of nodes and linkages based on the detected deformation, create a three-dimensional deformation field that represent the detected deformation of branched anatomical, and apply the three-dimensional deformation field to the reference three dimensional geometric model.
Abstract:
A method comprises determining a predicted pose of an elongate medical device within a patient anatomy. The method further comprises extracting a plurality of reference images from 3-D reference information, wherein the plurality of reference images includes a predicted reference image corresponding to the predicted pose of the elongate medical device. The method comprises capturing an x-ray image of the patient anatomy, wherein the captured x-ray image includes captured x-ray attenuation information. The method further comprises searching for a closest matching reference image between the captured x-ray image and one of the plurality of reference images. The method comprises determining an offset between the captured x-ray image and the closest matching reference image.
Abstract:
A method comprises generating a model of an anatomic region and receiving a true image from an endoscopic image capture probe positioned within the anatomic region. The method further comprises identifying a true fiducial region in the true image and identifying a plurality of virtual tissue structures in the model of the anatomic region. The method further comprises matching one of the plurality of the virtual tissue structures with the true fiducial region and determining a probe pose of the endoscopic image capture probe from the matched one of the plurality of virtual tissue structures.
Abstract:
A method comprises identifying connected anatomical structures in stored images of a patient anatomy and generating a plurality of cylindrical linkage elements representing the connected anatomical structures. The method also comprises receiving tracking data corresponding to a point on an instrument positioned within at least one of the connected anatomical structures; and matching the point on the instrument to one of the plurality of cylindrical linkage elements.
Abstract:
A method of tracking a medical instrument comprises receiving a model of an anatomical passageway formation and receiving a set of ordered sensor records for the medical instrument. The set of ordered sensor records provide a path history of the medical instrument. The method further comprises registering the medical instrument with the model of the anatomical passageway formation based on the path history. The method further includes displaying a virtual visualization image in a display system, the virtual visualization image being based on the registering of the medical instrument with the model of the anatomical passageway and depicting a rendered view of the model of the anatomical passageway from a perspective of the medical instrument within the model of the anatomical passageway.
Abstract:
A medical robotic system and method of operating such comprises taking intraoperative external image data of a patient anatomy, and using that image data to generate a modeling adjustment for a control system of the medical robotic system (e.g., updating anatomic model and/or refining instrument registration), and/or adjust a procedure control aspect (e.g., regulating substance or therapy delivery, improving targeting, and/or tracking performance).
Abstract:
A medical robotic system and method of operating such comprises taking intraoperative external image data of a patient anatomy, and using that image data to generate a modeling adjustment for a control system of the medical robotic system (e.g., updating anatomic model and/or refining instrument registration), and/or adjust a procedure control aspect (e.g., regulating substance or therapy delivery, improving targeting, and/or tracking performance).
Abstract:
A system comprises one or more processors. The system further comprises memory having computer readable instructions stored thereon that, when executed by the one or more processors, cause the system to: obtain a reference tree of nodes and linkages for a reference three dimensional volumetric representation of a branched anatomical formation in a reference state; based on the reference tree, generate a reference three dimensional geometric model; based on measurements from a sensor system, detect deformation of the branched anatomical formation; based on the detected deformation, obtain a deformed tree of nodes and linkages; and generate a three dimensional deformation field that represents the detected deformation of the branched anatomical formation.