摘要:
A wideband electronically scanned cylindrical array includes an array of end-fire radiating elements, the elements arranged in a first plurality of columns, the columns arranged radially about a center axis of the array. A beamforming network is connected to the array of radiating elements. The beamforming network includes a power divider circuit for dividing an input RF drive signal into a second plurality of drive signals, and a matrix of electronically controlled transfer switches. A true time delay network comprising a third plurality of delay lines couples respective ones of the drive signals to the matrix of transfer switches. A third plurality of transmit amplifiers is coupled to the matrix of transfer switches, each amplifier for amplifying a respective one of the drive signals. The beamforming network further includes apparatus for coupling the amplified drive signals to selected ones of the columns of radiating elements. A beamforming controller is connected to the coupling apparatus and the matrix of transfer switches for selecting sectors of the columns of radiating elements to be driven by the drive signals to form a desired beam. The columns of radiating elements are arranged in a circularly symmetric fashion about the axis in the disclosed embodiment.
摘要:
Compact, microwave scanned antennas include combinations of a radiator, a reflector and a mirror. The radiator is formed by plating a shaped dielectric core. It generates an antenna beam at an output aperture in response to a microwave signal at an input port. The wavefront orientation of the antenna beam is a function of the wavefront orientation of the microwave signal at the input port. Changing the angular relationship between the path of the microwave signal and the input port changes the wavefront orentation of the antenna beam and, therefore, its beam axis. Pivoting the reflector realizes the desired angular change in the microwave signal path. Alternatively, the reflector can be fixed and the mirror pivoted to vary the microwave signal path. Antenna embodiments can be physically realized with a single moving part, the shaped dielectric is easy to form and when configured to operate at a high frequency, e.g., 77 GHz, the antenna is small enough to fit behind an automobile license plate.
摘要:
A wideband radiating element including an input mechanism for receiving electromagnetic energy from a source and a balanced feeding mechanism extending from the input mechanism for transmitting the electromagnetic energy and for providing impedance matching over a range of frequencies. Finally, a dipole mechanism extending from the balanced feeding mechanism is provided for radiating the electromagnetic energy where the dipole mechanism has a shape to provide wide bandwidth impedance matching. In a preferred embodiment, an input mounting block is connected to the two opposing sides of a planar dielectric substrate. A balanced narrow conductor slot line extends from the input mounting block on both sides of the dielectric substrate to transmit the electromagnetic energy and to provide impedance matching over a frequency range of (0.5 to 18) GHz. The narrow conductor slot line is tapered to match the radiation resistance of a dipole element utilized to radiate the electromagnetic energy. The dipole element extends from the balanced narrow conductor slot line on both sides of the dielectric substrate with each wing having an expanded width for accommodating surface current of various distributions over the frequency range. The dipole element also includes an inner taper for radiating energy over the frequency range with the position of the dipole element relative to a ground plane being optimized to minimize radiation reflection.
摘要:
A fiber optic corporate power divider/combiner for use in fiber optic systems is provided. When functioning as an optical divider, the invention includes a dielectric lens for converting incoming optical energy from a divergent spherical wave to a plane wave. A micro-lens array in optical alignment with the dielectric lens functions to partition and focus the plane wave to provide a coherent phase optical dot pattern. A fiber bundle is provided to receive and uniformly distribute the coherent phase optical dot pattern. When functioning as an optical combiner, the invention includes the micro-lens array to convert an incoming coherent phase optical dot pattern from a plurality of divergent spherical waves to a plane wave. The dielectric lens optically aligned with the micro-lens array receives and converts the plane wave to a convergent spherical wave and a single optical fiber receives and transforms the convergent spherical wave into parallel rays for transmission. In a preferred embodiment, the dielectric lens comprises a single hyperbolic lens which is in juxtaposition to a plurality of hyperbolic lenses forming the micro-lens array. The number of lenses in the micro-lens array is equal to the number of optical fibers in the bundle for permitting optimum transmission of optical energy.
摘要:
A space-fed conformal array for a high altitude airship includes a primary array lens assembly adapted for conformal mounting to a non-planar airship surface. The lens assembly includes a first set of radiator elements and a second set of radiator elements, the first set and the second set spaced apart by a spacing distance. The first set of radiators faces outwardly from the airship surface to provide a radiating aperture. The second set of radiators faces inwardly toward an inner space of the airship, for illumination by a feed array spaced from the second set of radiators.
摘要:
A conformal end-fire antenna with a high impedance ground surface structure and an array of radiating elements formed thereon. The ground surface structure includes an array of metal protrusions on a electrically conductive sheet, the metal protrusions arranged in a two-dimensional lattice. The ground surface structure acts as a magnetic surface at an RF frequency band of interest, functioning as an electrical short at DC, and as a mirror which reflects an RF field in the frequency band with virtually no phase reversal.
摘要:
A phase shifter comprises a substrate, a ground plane formed on a first surface of the substrate, a support structure positioned on a second surface of the substrate opposite the first surface, three parallel, non-co-planar microstrip lines supported by the support structure above the second surface of the substrate, a ferrite element supported by the support structure between the second surface of the substrate and the three non-co-planar microstrip lines, and means for applying a magnetic field to the ferrite element.
摘要:
A dual-band, space fed antenna array includes a feed array with a first set of feed radiators for operation in a first frequency band of operation and a second set of feed radiators for operation in a second frequency band of operation. A primary array lens assembly is spaced from and illuminated by the feed array. The primary array lens includes a first set of radiator elements and a second set of radiator elements operable in the first frequency band of operation. The primary array lens assembly also includes a third set of radiator elements and a fourth set of radiator elements operable in the second frequency band of operation.
摘要:
A space-fed array is selectively operable in a reflective mode or in a feed-through mode. The array includes, in an exemplary embodiment, a primary array; and a feed array. The primary array includes a first side set of radiating elements, a first set of phase shifters, a set of switches, a second set of phase shifters and a second side set of radiating elements. Each of the switches is connected between corresponding ones of the first set and the second set of phase shifters and ground, selectively settable at an open position or at a closed position. The open position corresponds to the feed through mode, and the closed position corresponds to the reflective mode.
摘要:
A microelectromechanical system (MEMS) steerable electronically scanned lens array (ESA) antenna and method of frequency scanning are disclosed. The MEMS ESA antenna includes a wide band feedthrough lens and a continuous transverse stub (CTS) feed array. The wide band feedthrough lens includes first and second arrays of wide band radiating elements and an array of MEMS phase shifter modules disposed between the first and second arrays of radiating elements. The continuous transverse stub (CTS) feed array is disposed adjacent the first array of radiating elements for providing a planar wave front in the near field. The MEMS phase shifter modules steer a beam radiated from the CTS feed array in two dimensions.