Abstract:
A semiconductor device having a dual trench and methods of fabricating the same, a semiconductor module, an electronic circuit board, and an electronic system are provided. The semiconductor device includes a semiconductor substrate having a cell region including a cell trench and a peripheral region including a peripheral trench. The cell trench is filled with a core insulating material layer, and the peripheral trench is filled with a padding insulating material layer conformably formed on an inner surface thereof and a core insulating material layer formed on an inner surface of the padding insulating material layer. The core insulating material layer has a greater fluidity than the padding insulating material layer.
Abstract:
A method of forming an active region structure includes preparing a semiconductor substrate having a cell array region and a peripheral circuit region, forming upper cell mask patterns having a line shape in the cell array region, forming first and second peripheral mask patterns in the peripheral circuit region, the first and second peripheral mask patterns being stacked in sequence and covering the peripheral circuit region, and upper surfaces of the upper cell mask patterns forming a step difference with an upper surface of the second peripheral mask pattern, forming spacers on sidewalls of the upper cell mask patterns to expose lower portions of the upper cell mask patterns and the second peripheral mask pattern, and removing the lower portions of the upper cell mask patterns using the spacers and the first and second peripheral mask patterns as an etch mask.
Abstract:
A semiconductor device may include plugs disposed in a zigzag pattern, interconnections electrically connected to the plugs and a protection pattern which is interposed between the plugs and the interconnections to selectively expose the plugs. The interconnections may include a connection portion which is in contact with plugs selectively exposed by the protection pattern. A method of manufacturing a semiconductor device includes, after forming a molding pattern and a mask pattern, selectively etching a protection layer using the mask pattern to form a protection pattern exposing a plug.
Abstract:
A semiconductor device may include plugs disposed in a zigzag pattern, interconnections electrically connected to the plugs and a protection pattern which is interposed between the plugs and the interconnections to selectively expose the plugs. The interconnections may include a connection portion which is in contact with plugs selectively exposed by the protection pattern. A method of manufacturing a semiconductor device includes, after forming a molding pattern and a mask pattern, selectively etching a protection layer using the mask pattern to form a protection pattern exposing a plug.
Abstract:
Embodiments of a semiconductor device including a resistor and a method of fabricating the same are provided. The semiconductor device includes a mold pattern disposed on a semiconductor substrate to define a trench, a resistance pattern including a body region and first and second contact regions, wherein the body region covers the bottom and sidewalls of the trench, the first and second contact regions extend from the extending from the body region over upper surfaces of the mold pattern, respectively; and first and second lines contacting the first and second contact regions, respectively.
Abstract:
A method of fabricating an integrated circuit device includes forming first and second mask structures on respective first and second regions of a feature layer. Each of the first and second mask structures includes a dual mask pattern and an etch mask pattern thereon having an etch selectivity relative to the dual mask pattern. The etch mask patterns of the first and second mask structures are isotropically etched to remove the etch mask pattern from the first mask structure while maintaining at least a portion of the etch mask pattern on the second mask structure. Spacers are formed on opposing sidewalls of the first and second mask structures. The first mask structure is selectively removed from between the spacers in the first region using the portion of the etch mask pattern on the second mask structure as a mask to define a first mask pattern including the opposing sidewall spacers with a void therebetween in the first region, and a second mask pattern including the opposing sidewall spacers with the second mask structure therebetween in the second region. The feature layer may be patterned using the first mask pattern as a mask to define a first feature on the first region, and using the second mask pattern as a mask to define a second feature on the second region having a greater width than the first feature.
Abstract:
A method of forming a non-volatile memory device includes forming first mask patterns, which can have relatively large distances therebetween. A distance regulating layer is formed that conformally covers the first mask patterns. Second mask patterns are formed in grooves on the distance regulating layer between the first mask patterns.
Abstract:
Methods of forming a semiconductor device include forming a mask layer on a semiconductor substrate. The mask layer has vertically and horizontally extending portions. The vertically extending portions have a thickness selected to provide a desired line width to an underlying structure to be formed using the mask layer and a height greater than a height of the horizontally extending portions. The underlying structure is formed using the mask layer.
Abstract:
The inventive concepts provide methods for fabricating a semiconductor device and semiconductor devices fabricated by the same. According to the method, conductive lines having a fine pitch smaller than the minimum pitch realized by an exposure process may be formed using two or three photolithography processes and two spacer formation processes. In addition, node separation regions of the conductive lines may be easily formed without a misalignment problem.
Abstract:
Disclosed are non-volatile memory devices and methods of manufacturing the same. The non-volatile memory device includes device isolation patterns defining active portions in a substrate and gate structures disposed on the substrate. The active portions are spaced apart from each other in a first direction and extend in a second direction perpendicular to the first direction. The gate structures are spaced apart from each other in the second direction and extend in the first direction. Each of the device isolation patterns includes a first air gap, and each of a top surface and a bottom surface of the first air gap has a wave-shape in a cross-sectional view taken along the second direction.