Abstract:
A drag block for retaining slips on a tool includes a body having a substantially annular outer surface and a substantially annular inner surface, and a plurality of drag block members resiliently mounted to the substantially annular outer surface. Each of the plurality of drag block members includes a support element and a block element. The support element has a first end fixedly mounted to the substantially annular outer surface and a second, cantilevered end. The drag block is mounted to the second cantilevered end.
Abstract:
A settable device including a radially enlargeable portion, a force retention pathway (between 20 and 42 or between 20 and 160) operably connected to the radially enlargeable portion to maintain a setting force to the radially enlargeable portion, a material disposed within the force retention pathway (between 20 and 42 or between 20 and 160) of the device, the material retaining force when in solid form and disengaging force retention when in fluid form.
Abstract:
A downhole tool including a housing, a first portion of a trigger mechanism disposed in the housing, a degradable-on-command component movably disposed within the housing, a second portion of the trigger mechanism disposed in the component, the component being configured to positionally respond to an external input to dispose the first portion and second portion in operational contact with one another resulting in an initiation of degradation of the degradable-on-command component. A method for removing a component of a downhole tool.
Abstract:
An embodiment of a gripping arrangement includes a mandrel having an axially extending groove therein, a first slip ring about the mandrel, a first cone about the mandrel spaced from the first slip ring, and a key engaged with the groove such that the key is axially movable and rotationally fixed relative to the mandrel. The key is disposed to maintain the spacing between the first slip ring and the first cone. The gripping arrangement also includes a release feature releasably interconnected with the key and method.
Abstract:
A downhole assembly includes a downhole tool including a degradable-on-demand material and a triggering system. The degradable-on-demand material includes a matrix material and an energetic material configured to generate energy upon activation to facilitate the degradation of the downhole tool. The triggering system includes an igniter arranged to ignite the downhole tool, an electrical circuit, and a pre-set timer. In an open condition of the circuit the igniter is not activated, and in a closed condition of the circuit the igniter is activated. The pre-set timer is operable to close the electrical circuit after a pre-set time period.
Abstract:
A degradable seat arrangement consisting of a pusher; a cone having a tapered face; and a seal having a seal deformation face configured to contact the tapered face. A method for creating a seat in a borehole.
Abstract:
A method of manufacturing a valve of a tool for use downhole includes changing a flow characteristic of the valve. A load is applied to a first nozzle secured in a housing of the valve via a first release member, wherein a magnitude of the load is greater than a release threshold of the first release member, to release the first release member. The first nozzle is removed from the housing, and a second nozzle is secured in the housing via a second release member.
Abstract:
A packer including a body having a first axial end and a second axial end; an element disposed about the body; a flow passage within the body extending from the first axial end to the second axial end; a first pathway including a first port dimensioned and configured to receive a first penetrator and a second opening having a dimension smaller than the first port, the first port being located at the first axial end of the body and the second opening being located at the second axial end of the body; and a second pathway including a second port dimensioned and configured to receive a second penetrator and a first opening having a dimension smaller than the second port, the second port being located at the second axial end of the body and the first opening being located at the first axial end of the body.
Abstract:
A downhole assembly arranged within a borehole includes a downhole tool including a degradable-on-demand material, the degradable-on-demand material including: a matrix material; and, an energetic material configured to generate energy upon activation to facilitate the degradation of the downhole tool; and, a triggering system including: an electrical circuit; an igniter in the electrical circuit arranged to ignite the energetic material; a sensor configured to sense a target event or parameter within the borehole; and, a control unit arranged to receive sensed signals from the sensor and to deliver a start signal to the electrical circuit in response to the sensed signals indicating an occurrence of the target event or parameter; wherein, after the start signal is delivered from the control unit, the electrical circuit is closed and the igniter is initiated.
Abstract:
A downhole element for use in a wellbore with a wellbore fluid. The downhole element includes a body formed from a dissolvable material to degrade at a first rate when exposed to the wellbore fluid, with at least one cavity defined by the body. A degradation agent is disposed within the at least one cavity. The at least one cavity selectively releases the degradation agent and the degradation agent degrades the body at a second rate when exposed to the wellbore fluid and the dissolvable material.