摘要:
An automated method for estimating layout-induced variations in threshold voltage in an integrated circuit layout. The method begins with the steps of selecting a diffusion area within the layout for analysis. Then, the system identifies Si/STI edges on the selected area as well as channel areas and their associated gate/Si edges. Next, the threshold voltage variations in each identified channel area are identified, which requires further steps of calculating threshold voltage variations due to effects in a longitudinal direction; calculating threshold voltage variations due to effects in a transverse direction; and combining the longitudinal and transverse variations to provide an overall variation. Finally, a total variation is determined by combining variations from individual channel variations.
摘要:
A method for smoothing variations in threshold voltage in an integrated circuit layout. The method begins by identifying recombination surfaces associated with transistors in the layout. Such recombination surfaces are treated to affect the recombination of interstitial atoms adjacent such surfaces, thus minimizing variations in threshold voltage of transistors within the layout
摘要:
Methods are provided for depositing materials in forming semiconductor devices on a substrate, such as metal oxide transistors. In one embodiment, the invention generally provides a method of processing a substrate including forming a gate dielectric on a substrate having a first conductivity, forming a gate electrode on the gate dielectric, forming a first pair of sidewall spacers along laterally opposite sidewalls of the gate electrode, etching a pair of source/drain region definitions on opposite sides of the electrode, depositing a silicon-germanium material selectively in the source/drain region definitions, and implanting a dopant in the deposited silicon-germanium material to form a source/drain region having a second conductivity.
摘要:
By forming MOSFETs on a substrate having pre-existing ridges of semiconductor material (i.e., a “corrugated substrate”), the resolution limitations associated with conventional semiconductor manufacturing processes can be overcome, and high-performance, low-power transistors can be reliably and repeatably produced. Forming a corrugated substrate prior to actual device formation allows the ridges on the corrugated substrate to be created using high precision techniques that are not ordinarily suitable for device production. MOSFETs that subsequently incorporate the high-precision ridges into their channel regions will typically exhibit much more precise and less variable performance than similar MOSFETs formed using optical lithography-based techniques that cannot provide the same degree of patterning accuracy. Additional performance enhancement techniques such as pulse-shaped doping and “wrapped” gates can be used in conjunction with the segmented channel regions to further enhance device performance.
摘要:
By forming MOSFETs on a substrate having pre-existing ridges of semiconductor material (i.e., a “corrugated substrate”), the resolution limitations associated with conventional semiconductor manufacturing processes can be overcome, and high-performance, low-power transistors can be reliably and repeatably produced. Forming a corrugated substrate prior to actual device formation allows the ridges on the corrugated substrate to be created using high precision techniques that are not ordinarily suitable for device production. MOSFETs that subsequently incorporate the high-precision ridges into their channel regions will typically exhibit much more precise and less variable performance than similar MOSFETs formed using optical lithography-based techniques that cannot provide the same degree of patterning accuracy. Additional performance enhancement techniques such as pulse-shaped doping and “wrapped” gates can be used in conjunction with the segmented channel regions to further enhance device performance.
摘要:
Self-aligned via interconnects using relaxed patterning exposure. In accordance with a first method embodiment, a method for controlling a computer-aided design (CAD) system for designing physical features of an integrated circuit includes accessing a first pattern for first metal traces on a first metal layer, accessing a second pattern for second metal traces on a second metal layer, vertically adjacent to the first metal layer and accessing a precise pattern of intended interconnections between the first and second metal traces. The precise pattern of intended interconnections is operated on to form an imprecise via pattern that indicates a plurality of general areas in which vias are allowed. The imprecise via pattern is for use in an integrated circuit manufacturing process to form, in conjunction with operations to form the first and second metal layers, a plurality of self-aligned vias for interconnecting the intended interconnections.
摘要:
Roughly described, a method for approximating stress-induced mobility enhancement in a channel region in an integrated circuit layout, including approximating the stress at each of a plurality of sample points in the channel, converting the stress approximation at each of the sample points to a respective mobility enhancement value, and averaging the mobility enhancement values at all the sample points. The method enables integrated circuit stress analysis that takes into account stresses contributed by multiple stress generation mechanisms, stresses having vector components other than along the length of the channel, and stress contributions (including mitigations) due to the presence of other structures in the neighborhood of the channel region under study, other than the nearest STI interfaces. The method also enables stress analysis of large layout regions and even full-chip layouts, without incurring the computation costs of a full TCAD simulation.
摘要:
Roughly described, a method for approximating stress-induced mobility enhancement in a channel region in an integrated circuit layout, including approximating the stress at each of a plurality of sample points in the channel, converting the stress approximation at each of the sample points to a respective mobility enhancement value, and averaging the mobility enhancement values at all the sample points. The method enables integrated circuit stress analysis that takes into account stresses contributed by multiple stress generation mechanisms, stresses having vector components other than along the length of the channel, and stress contributions (including mitigations) due to the presence of other structures in the neighborhood of the channel region under study, other than the nearest STI interfaces. The method also enables stress analysis of large layout regions and even full-chip layouts, without incurring the computation costs of a full TCAD simulation.
摘要:
Roughly described, a method for approximating stress-induced mobility enhancement in a channel region in an integrated circuit layout, including approximating the stress at each of a plurality of sample points in the channel, converting the stress approximation at each of the sample points to a respective mobility enhancement value, and averaging the mobility enhancement values at all the sample points. The method enables integrated circuit stress analysis that takes into account stresses contributed by multiple stress generation mechanisms, stresses having vector components other than along the length of the channel, and stress contributions (including mitigations) due to the presence of other structures in the neighborhood of the channel region under study, other than the nearest STI interfaces. The method also enables stress analysis of large layout regions and even full-chip layouts, without incurring the computation costs of a full TCAD simulation.
摘要:
Roughly described, an integrated circuit device has formed on a substrate a plurality of transistors including a first subset of at least one transistor and a second subset of at least one transistor, wherein all of the transistors in the first subset have one underlap distance and all of the transistors in the second subset have a different underlap distance. The transistors in the first and second subsets preferably have different threshold voltages, and preferably realize different points on the high performance/low power tradeoff.