Abstract:
The disclosure pertains to a memory redundancy circuit. A main memory may, if there should be defective zones (defective columns for example), be replaced by a redundancy memory. A defective address memory is initialized during the testing of the main memory. During normal operation relating to access to the main memory, each main memory address is compared with all the defective addresses to replace the zone of the main memory with a redundancy memory. During the testing of the main memory, it is generally necessary to initialize each address of the defective address memory. This causes time to be lost if the main memory is fault-free. The disclosure provides for an inhibition circuit that can be used to put the defective address memory out of service or to make its operation ineffective, and to do so permanently. Application to integrated circuit memories.
Abstract:
The disclosure relates to integrated circuits and, notably, to memories. A description is given of a bistable type of programmable, non-volatile memory, namely a memory that can take one state or another by the programming of one of two floating-gate transistors of the cell. To program a cell such as this, there are two transistors for the application of a programming voltage (VPRG). In order that the signals going through the programming paths (in particular the address signals) may not disturb the state of the cell in reading mode, provision is made for two isolation transistors interposed between the transistors for the application of the programming voltage and the drains of the floating-gate transistors. These isolation transistors are made conductive by a signal CAMSEL solely for a programming operation and solely for only one group of cells to be programmed. These cells can be applied notably to the storage of defective address elements in the redundancy circuits of large-capacity memories.
Abstract:
A method for the addressing of redundant elements of an integrated circuit memory is disclosed. This memory comprises an array of row memory elements and column memory elements, respectively addressable by row addresses and column addresses, at least one battery of fuses to store the address of a faulty element of the memory. The method consists:for one battery, in associating said battery with a row/column address pair;in memorizing, through the blowing of certain fuses in the battery after the testing of a memory element, the address either of a column element if the faulty element is a column element or that of a row element if the faulty element is a row element;and in enabling only the row addresses when the stored address is that of a row element or only the column addresses when the stored address is that of a column element, to address either a row redundant element or a column redundant element.
Abstract:
The present invention relates to a memory on a silicon microchip, comprising a serial input/output and an integrated memory array addressable under N bits. According to the present invention, the memory comprises means for storing a most significant address allocated to the memory within an extended memory array addressable with an extended address of N+K bits, an extended address counter for storing an extended address received at the serial input/output of the memory, the extended address comprising N least significant bits that are applied to the integrated memory array, and K most significant bits, means for comparing the K most significant bits with the most significant address allocated to the memory, and means for preventing the execution of a command for reading or writing the integrated memory array if the K most significant address bits are different to the most significant address allocated to the memory. In one embodiment, a ready/busy pad is provided that is taken to a selected potential to prevent access to the memory.
Abstract:
An integrated circuit having a voltage generator supplying a determined voltage, a voltage-limiting circuit arranged at the output of the voltage generator, the voltage-limiting circuit having at least one PN junction formed by a diode-arranged MOS transistor, the PN junction having a breakdown voltage defining a threshold for triggering the voltage-limiting circuit as from which the PN junction is on by avalanche effect, at least one load in series with the PN junction for limiting an avalanche current passing through the PN junction when the PN junction is on, and at least one switch in parallel with the PN junction and the load, the switch arranged in the open state when the PN junction is off and to be in the closed state when the PN junction is on.
Abstract:
A memory circuit comprising a memory area for storing data, a non-volatile memory area for storing at least one identification code, and a pin for storing the identification code in the non-volatile memory area. The memory circuit further comprising a programmable register in which a programmable state is fixed, wherein the programmable state indicates if the identification code has been stored in the non-volatile memory area, and a logic module which blocks any subsequent changes to the identification code fixed in the non-volatile memory area in response to the programmable state in the programmable register indicating that the identification code has been stored in the non-volatile area. The invention also relates to an associated method. The invention is useful particularly to avoid fraudulent reprogramming of the area containing the identification code. The invention also relates to an associated method.
Abstract:
A FLASH memory erasable by page includes a flash memory array containing a plurality of floating gate transistors arranged in pages, and a checking circuit for checking the threshold voltages of the floating gate transistors. Programmed transistors that have a threshold voltage less than a given threshold are reprogrammed. The checking circuit includes a non-volatile counter formed by at least one row of floating gate transistors, a reading circuit for reading the address of a page to be checked in the counter, and an incrementing circuit for incrementing the counter after a page has been checked.
Abstract:
Two different types of memory are integrated on the same type of integrated circuit. A microcontroller is associated with each of these memories. In order that the independence of operation of these microcontrollers may be ensured, they are each provided with time delay circuits whose role is to maintain the read or write operation of one microcontroller when another is selected.
Abstract:
A method for the erasure of a non-volatile and electrically erasable memory in which the amplitude of the pulses that are sent to erase the memory varies as a function of the number of pulses previously sent. A circuit for the generation of erasure pulses of variable amplitude for a non-volatile and electrically erasable memory.
Abstract:
A method and apparatus for the programming and erasure of a memory cell made out of floating-gate transistors and to the circuit pertaining thereto is described. It can be applied especially to non-volatile electrically erasable and programmable memories, for example EEPROMs and flash EPROMs. A programming voltage or erasure voltage including a voltage shift equal in value to a reference voltage is produced, followed by a voltage ramp comprising a rising phase followed possibly by voltage plateau, this voltage ramp being shifted in voltage by the value of the reference voltage and being followed, in turn, by a voltage drop. The value of the voltage shift is fixed at an intermediate value that is lower than the value of a so-called tunnel voltage of the memory cell but greater than the supply voltage.