Abstract:
A dispersion control fiber and a method of manufacturing a large size preform. The dispersion control fiber includes a core composed of SiO2, GeO2, and P2O5, and a cladding composed of SiO2, GeO2, P2O5, and Freon. The P2O5 content is selected not to exceed 10% total weight of a compound composing the core. The method of manufacturing a large size perform for a dispersion control fiber by an MCVD process includes depositing SiO2, GeO2, P2O5, and Freon in an inner periphery of a deposition tube to form a cladding layer, and depositing SiO2, GeO2, and P2O5 on an inner periphery of the cladding layer to form a core layer.
Abstract translation:一种分散控制纤维及其制造方法。 色散控制光纤包括由SiO 2,GeO 2和P 2 O 5组成的芯和由SiO 2,GeO 2,P 2 O 5和氟利昂组成的包层。 选择P2O5含量不超过构成核心的化合物的总重量的10%。 通过MCVD工艺制造用于分散控制光纤的大尺寸的方法包括在沉积管的内周中沉积SiO 2,GeO 2,P 2 O 5和氟利昂以形成包覆层,并将SiO 2,GeO 2和P 2 O 5沉积在 包层的内周,形成芯层。
Abstract:
A hole transporting compound for organic electroluminescent devices with good thermal stability, which includes 6,6′-bis(9H,9-carbazolyl)-N,N′-disubstituted-3,3′-bicarbazyl as a basic molecular structure, is represented by the following formula I: wherein R is a hydrogen atom, a C1-12 aliphatic alkyl group, a C3-12 branched alkyl group, a C5-12 cyclic alkyl group, or a C4-14 aromatic group, wherein the aromatic group can have one or more alkoxy or amine substituents,
Abstract:
Provided is a method for providing a personal broadcasting service. The method includes receiving a request for a broadcast theme or content from a broadcast receiving terminal, searching for broadcast providing terminals configured to provide a personal broadcast associated with the broadcast theme or content, selecting one of the searched broadcast providing terminals, and providing, when a personal broadcast registration request is received from the selected broadcast providing terminal, information associated with the requested personal broadcast to the broadcast receiving terminal.
Abstract:
There is provided a toner having good charging characteristics that is composed of a core region and a thin shell in which a charge control agent is densely distributed so as to improve charging characteristics of the toner, and a method for manufacturing the same. The method for manufacturing a toner having a bi-layered structure includes: producing a toner core using a suspension polymerization method; preparing a suspension of toner particles having a core-shell structure by forming a rigid shell on a surface of the toner core; and recovering the toner particles from the suspension as a post-processing operation.
Abstract:
Disclosed is a liquid crystal mixture that includes an isotropic mixture of liquid crystal molecules and a photo-polymerizable monomer. In addition, disclosed are a liquid crystal display (LCD) including a first display panel and a second display panel facing each other, and a liquid crystal layer disposed between the first display panel and the second display panel and including a plurality of liquid crystal regions and a plurality of polymer structures positioned among the plurality of liquid crystal regions, and a method of manufacturing the liquid crystal display (LCD). The liquid crystal layer is formed of a liquid crystal mixture in which liquid crystal molecules and a photo-polymerizable monomer exist isotropically.
Abstract:
There is provided a toner having good charging characteristics that is composed of a core region and a thin shell in which a charge control agent is densely distributed so as to improve charging characteristics of the toner, and a method for manufacturing the same. The method for manufacturing a toner having a bi-layered structure includes: producing a toner core using a suspension polymerization method; preparing a suspension of toner particles having a core-shell structure by forming a rigid shell on a surface of the toner core; and recovering the toner particles from the suspension as a post-processing operation.
Abstract:
A method and a system for using the method are provided. The method and system allow a low power device having an asymmetric link to access a wireless network to exchange beacons with any one of a plurality of normal power devices in the wireless network. The method includes the steps of confirming whether the low power device has the asymmetric link with the normal power device, when the low power device receives a beacon of the low power device based on the received beacon; negotiating with at least one relay device so that the low power device requests a relay with respect to the asymmetric link, when the low power device has an asymmetric link with the normal power device; and at least one relay device noting a result of the negotiation to the low power device and a normal power device with which the low power device is intending to communicate, based on the result of the negotiation.
Abstract:
A power saving method of the present invention is provide for a wireless sensor network including a plurality of sensor nodes each transiting between a power saving mode and a transmit/receive mode, determines whether or not there is no transmit or receive data, enters the power saving mode if there is no transmit or receive data, and controls power consumption on the basis of signal-to-noise ratios in the power saving mode. In the power saving method of the present invention, it is possible to minimize the power consumption regardless of nodes density and without an adverse effect on the connectivity of the network, since the sojourn times of the sleep and idle states are determined adaptive to the interference level from neighboring nodes.
Abstract:
A method and apparatus for scheduling in a Wireless Local Area Network (WLAN) mesh communication system including a plurality of Mesh Access Points (MAPs) are provided, in which, when a message to be transmitted from a first MAP of the MAPs to MAPs adjacent to first MAP is generated, setting a first interval for transmitting the generated message during a predetermined period, and setting a remaining interval excluding the first interval during the predetermined period as a second interval for receiving messages from the adjacent MAPs.
Abstract:
Biphenyl derivatives having four substituents at meta positions of biphenyl structure, which is a core molecular structure, and organic electroluminescent devices using the biphenyl derivatives. The biphenyl derivatives are phosphorescent host compounds having amorphous structures and have excellent thermal stability and high solubility in general organic solvents, is easily to use for solution (or wet) process, and can easily energy-transfer to a metal complex used as dopant. The biphenyl derivatives also can be used as blue host materials of phosphorescent emission layer, hole transporting materials, or a hole injecting materials of an organic electroluminescent device.