摘要:
Disclosed herein are systems, apparatuses, and methods for providing a proximity coupling without Ohmic contact. Such a system includes a plurality of wireless-enabled components (WECs) that are wirelessly coupled to each other. Each WEC includes a metal-based element, a substrate, and a semiconductor layer that separates the metal-based element from the substrate. A signal is configured to be transmitted via a proximity coupling (e.g., a magnetic coupling, an electric coupling, and/or an electromagnetic coupling) between the metal-based element and the substrate without an Ohmic contact between the metal-based element and the substrate. In an example, a first subset of the plurality of the WECs is co-located on a first chip, and a second subset of the plurality of the WECs is co-located on a second chip. The first chip and the second chip may be located in a single device or in separate devices.
摘要:
Disclosed herein are systems, apparatuses, and methods for creating a system of wireless-enabled components (WECs). Such a system includes a server and a plurality of wireless-enabled component (WECs). Each WEC includes a functional resource (e.g., a processing resource and/or a memory resource) and is configured for wireless communication with the server and one or more other WECs. A first WEC is configured to wirelessly upload, to the server, an availability of the functional resource of the first WEC. The first WEC is further configured to wirelessly download, from the server, a linking resource for linking with one or more of the plurality of WECs. The plurality of WECs may be located on a single chip, on multiple chips of a single device, or on multiple chips of multiple devices.
摘要:
A Radio Frequency (RF) transceiver includes a baseband processor, a receiver section, and a transmitter section. The receiver section communicatively couples to the baseband processor and includes a plurality of tuned RF circuits. The transmitter section communicatively couples to the baseband processor and includes a plurality of tuned RF circuits. In a calibration operation, the transmitter section applies a RF test signal to its plurality of tuned RF circuits. The baseband processor applies a plurality of tuning control settings to each the tuned RF circuit. The baseband processor, for each of the plurality of tuning control settings, measures an output of the tuned RF circuit. The baseband processor selects a tuning control setting for the tuned RF circuit based upon at least one measured output of the tuned RF circuit. Finally, the baseband processor is operable to apply a selected tuning control setting to the tuned RF circuit.
摘要:
A wireless device includes an antenna, Radio Frequency (RF) circuitry, and baseband processing circuitry. The baseband processing circuitry couples to the RF circuitry and is operable to determine operational calibrations settings that may include pre-distortion characteristics and RF signal path settings, both of which are determined via calibration operations. The calibration operations are initiated when an operational value of the wireless device compares unfavorably to at least one operational threshold. Monitoring circuitry coupled to the RF circuitry and to the baseband processing circuitry monitors operational characteristics of the RF circuitry. Calibration operations may be initiated based upon RF circuitry temperature, supply voltage, PA current, PA gain input level/average, among other triggers.
摘要:
A wireless device includes processing circuitry and Radio Frequency (RF) receiver and transmitter sections. An antenna transmits and receives a Radio Frequency (RF) Multiple Frequency Bands Multiple Standards (MFBMS) signal having a plurality of RF information signals within respective information signal frequency bands. The receiver/transmitter sections down-convert/up-convert between the RF MFBMS signal and a corresponding baseband/low Intermediate Frequency (BB/IF) information signal based upon at least one shift frequency. During receipt, the processing circuitry enables a set of information signal modules corresponding to the set of information signals to service receipt and extraction of data from the set of BB/IF information signals using the enabled set of information signal modules. During transmission, the processing circuitry enables a set of information signal modules corresponding to the set of information signals and produces an outgoing BB/IF MFBMS signal. The processing circuitry further determines the at least one shift frequency, which varies over time.
摘要:
A wireless device includes processing circuitry, a receiver section, a transmitter section, and an antenna. The processing circuitry determines a set of information signals of a RF Multiple Frequency Bands Multiple Standards (MFBMS) signal. The receiver section includes a plurality of receive paths, each having down-conversion circuitry that down-converts a portion of the RF MFBMS signal by a respective shift frequency to produce a corresponding baseband/low Intermediate Frequency (BB/IF) information signal. A combiner combines the plurality of BB/IF information signals to form a BB/IF MFBMS signal, from which the processing circuitry extracts data. The transmitter section includes a plurality of transmit paths, each having up-conversion circuitry operable to up-convert a respective BB/IF information signal received from the processing circuitry by a respective shift frequency to produce a corresponding RF information signal and a combiner that combines the RF information signals to form a RF MFBMS signal.
摘要:
A single chip radio transceiver includes circuitry that enables received wideband RF signals to be down converted to base band frequencies and base band signals to be up converted to wideband RF signals prior to transmission without requiring conversion to an intermediate frequency. The circuitry includes a low noise amplifier, automatic frequency control circuitry for aligning the LO frequency with the frequency of the received RF signals, signal power measuring circuitry for measuring the signal to signal and power ratio and for adjusting frontal and rear amplification stages accordingly, and finally, filtering circuitry to filter high and low frequency interfering signals including DC offset.
摘要:
A Radio Frequency (RF) cascode power amplifier operates with differing battery supply voltages. A transconductance stage has a transistor with an RF signal input at its gate. A cascode stage has at least one cascode transistor, the cascode stage coupled in series with the transconductance stage between a battery voltage node and ground, the cascode stage having an RF signal output at the battery voltage node and at least one bias input to the at least one cascode transistor. Cascode bias feedback circuitry applies fixed bias voltage(s) to the at least one two bias inputs for a low battery voltage and applies feedback bias voltage(s) to the at least two bias inputs for a high battery voltage, the feedback bias voltage(s) based upon a voltage of the battery voltage node. More than two differing battery supply voltages are supported.
摘要:
A Radio Frequency (RF) transceiver includes a baseband processor, a receiver section, and a transmitter section. The receiver section communicatively couples to the baseband processor and includes a plurality of tuned RF circuits. The transmitter section communicatively couples to the baseband processor and includes a plurality of tuned RF circuits. In a calibration operation, the transmitter section applies a RF test signal to its plurality of tuned RF circuits. The baseband processor applies a plurality of tuning control settings to each the tuned RF circuit. The baseband processor, for each of the plurality of tuning control settings, measures an output of the tuned RF circuit. The baseband processor selects a tuning control setting for the tuned RF circuit based upon at least one measured output of the tuned RF circuit. Finally, the baseband processor is operable to apply a selected tuning control setting to the tuned RF circuit.
摘要:
A management unit manages a plurality of multiservice communication devices capable of communicating via a plurality of networks. The management unit includes a device interface for facilitating a bidirectional data communication with the plurality of multiservice communication devices via a wireless control channel, the bidirectional data communication including outbound control data sent to at least one of the plurality of multiservice communication devices and inbound control data received from at least one of the plurality of multiservice communication devices via either a logical or physical control channel. A network interface receives network resource data from the plurality of networks. A management processing unit includes a local agent that gathers environmental data, wherein the management processing unit processes the inbound control data, the environmental data and the network resource data and that generates the outbound control data in response thereto.