摘要:
An optical sensor formed from an optical waveguide having at least one core surrounded by a cladding and a large diameter generally D-shaped portion is disclosed. Axial or compressive strain across the D-shaped cross section may be determined by measuring the change in polarization or birefringence of the light output from the sensor. A layer responsive to a parameter may be disposed on a flat portion of the D-shaped portion of the sensor. The refractive index of the layer changes and/or the layer applies a strain on the sensor in response to the parameter. Changes in the refractive index of the layer alters the light output from the sensor, which is measured over time and correlated to the parameter.
摘要:
A large diameter optical waveguide, grating, and laser includes a waveguide 10 having at least one core 12 surrounded by a cladding 14, the core propagating light in substantially a few transverse spatial modes; and having an outer waveguide dimension d2 of said waveguide being greater than about 0.3 mm. At least one Bragg grating 16 may be impressed in the waveguide 10. The waveguide 10 may be axially compressed which causes the length L of the waveguide 10 to decrease without buckling. The waveguide 10 may be used for any application where a waveguide needs to be compression tuned, e.g., compression-tuned fiber gratings and lasers or other applications. Also, the waveguide 10 exhibits lower mode coupling from the core 12 to the cladding 14 and allows for higher optical power to be used when writing gratings 16 without damaging the waveguide 10. The shape of the waveguide 10 may have other geometries (e.g., a “dogbone” shape) and/or more than one grating or pair of gratings may be used and more than one core may be used. The core and/or cladding 12,14 may be doped with a rare-earth dopant and/or may be photosensitive. At least a portion of the core 12 may be doped between a pair of gratings 50,52 to form a fiber laser or the grating 16 or may be constructed as a tunable DFB fiber laser or an interactive fiber laser within the waveguide 10. The waveguide may resemble a short “block” or a longer “cane” type, depending on the application and dimensions used.
摘要:
An optical sensing device including a force-applying assembly for providing a force and a Fabry-Perot (FP) element including a large-diameter waveguide having a core and having a cavity in line with the core, the cavity having reflective surfaces and having an optical path length related to the distance between the reflective surfaces, the FP element being coupled to the force so that the optical path length changes according to the force, the FP element for providing an output optical signal containing information about a parameter that relates to the force. Sometimes the large-diameter waveguide is formed by collapsing a glass tube, having a bore and having an outer diameter of about one millimeter, onto a pair of optical fibers arranged in tandem in the bore and separated by a predetermined distance, and respective end faces of the optical fibers form the cavity and are coated with a wholly or partially reflective material.
摘要:
An optical filter, including a Bragg grating, is compression tuned such that when under one compressional load (or no load) the grating has a first profile and under a second compressional load the grating has a second profile. One application is to allow the grating filter function to be parked optically between channels of a WDM or DWDM optical system.
摘要:
A temperature compensated optical device includes a compression-tuned glass element 10 having a Bragg grating 12 therein, a compensating material spacer 26 and an end cap 28 all held within an outer shell 30. The element 10, end cap 28 and shell 30 are made of a material having a low coefficient of thermal expansion (CTE), e.g., silica, quartz, etc. and the spacer 26 is made of a material having a higher CTE, e.g., metal, Pyrex®, ceramic, etc. The material and length L5 of the spacer 26 is selected to offset the upward grating wavelength shift due to temperature. As temperature rises, the spacer 26 expands faster than the silica structure causing a compressive strain to be exerted on the element 10, which shifts the wavelength of the grating 12 down to balance the intrinsic temperature induces wavelength shift up. As a result, the grating 12 wavelength is substantially unchanged over a wide temperature range. The element 10 includes either an optical fiber having at least one Bragg grating 12 impressed therein encased within and fused to at least a portion of a glass capillary tube or a large diameter waveguide (or cane) with a grating 12 having a core 11 and a wide cladding, which does not buckle over a large range of compressive axial strains. The element may have a “dogbone” shape to amplify compressive strain on the grating 12. The device 8 may also be placed in an axially tunable system that allows the wavelength to be dynamically tuned while remaining athermal. In addition to a grating, the device may be an athermal laser, DFB laser, etc. Also, the entire device 8 may be all made of monolithic glass materials.
摘要:
A tunable optical filter filters is provided that has a pair of tunable Bragg grating units optically coupled to respective ports of a 4-port circulator for filtering a selected wavelength band or channel of light from a DWDM input light. Each grating unit includes an array of Bragg gratings written or embedded within a respective tunable optical element to provide a tunable optical filter that functions over a wide spectral range greater than the tunable range of each grating element. The reflection wavelengths of the array of gratings of each respective grating element is spaced at a predetermined spacing, such that when a pair of complementary gratings of the grating elements are aligned, the other complementary gratings are misaligned. Both of the optical elements may be tuned to selectively align each complementary grating over each corresponding spectral range.
摘要:
A tube-encased fiber grating includes an optical fiber 10 having at least one Bragg grating 12 impressed therein which is embedded within a glass capillary tube 20. Light 14 is incident on the grating 12 and light 16 is reflected at a reflection wavelength &lgr;1. The shape of the tube 20 may be other geometries (e.g., a “dogbone” shape) and/or more than one concentric tube may be used or more than one grating or pair of gratings may be used. The fiber 10 may be doped at least between a pair of gratings 150,152, encased in the tube 20 to form a tube-encased compression-tuned fiber laser or the grating 12 or gratings 150,152 may be constructed as a tunable DFB fiber laser encased in the tube 20. Also, the tube 20 may have an inner region 22 which is tapered away from the fiber 10 to provide strain relief for the fiber 10, or the tube 20 may have tapered (or fluted) sections 27 which have an outer geometry that decreases down to the fiber 10 and provides added fiber pull strength. Also, the tube-encased grating 12 exhibits lower mode coupling from the fiber core to the cladding modes due to the increased diameter of the cladding where the tube 20 is fused to the fiber 10 where the grating is located 12.
摘要:
An encoded microparticle including an optical substrate including a material that permits light to propagate therethrough. The optical substrate has an elongated body that extends in a direction along a central axis. The optical substrate includes an outer region that extends about the central axis. The encoded microparticle also includes an optically detectable code that is disposed within the optical substrate and extends along the central axis. The outer region surrounds the optically detectable code about the central axis. The optically detectable code is readable when the light propagates through the outer region and is at least one of reflected or filtered by the optically detectable code. Said at least one of reflected or filtered light propagates through the outer region to be detected for reading the optically detectable code.
摘要:
A method for fabricating microparticles. The method includes providing a removable substrate that has a photosensitive material. The substrate has a plurality of inner regions. Each inner region surrounds a corresponding outer region. The method also includes providing at least one optically detectable code within at least one of the inner regions of the substrate and etching lines into the substrate to create a plurality of microparticles having at least one optically detectable code therein. The microparticles have elongated bodies that extend in an axial direction. The optically detectable codes extend in the axial direction within the microparticles.
摘要:
A fluid diffusion resistant tube-encased fiber grating pressure sensor includes an optical fiber 10 having a Bragg grating 12 impressed therein which is encased within a sensing element, such as a glass capillary shell 20. A fluid blocking coating 30 is disposed on the outside surface of the capillary shell to prevent the diffusion of fluids, such as water molecules from diffusing into the shell. The fluid diffusion resistant fiber optic sensor reduces errors caused by the diffusion of water into the shell when the sensor is exposed to harsh conditions.