摘要:
Psoralen compounds are synthesized which have substitutions on the 4, 4′, 5′, and 8 positions of the psoralen, which permit enhanced binding to nucleic acid of pathogens. Higher psoralen binding levels and lower mutagenicity are described, resulting in safer, more efficient, and reliable inactivation of pathogens in blood products. The invention contemplates inactivation methods using the new psoralens which do not compromise the function of blood products for transfusion. In particular, use of 5′-primary aminoalkyl psoralens to inactivate pathogens in platelets is disclosed.
摘要:
Psoralen compounds are synthesized which have substitutions on the 4, 4', 5', and 8 positions of the psoralen, which permit enhanced binding to nucleic acid of pathogens. Higher psoralen binding levels and lower mutagenicity are described, resulting in safer, more efficient, and reliable inactivation of pathogens in blood products. The invention contemplates inactivation methods using the new psoralens which do not compromise the function of blood products for transfusion.
摘要:
Psoralen compounds are synthesized which have substitutions on the 4, 4', 5', and 8 positions of the psoralen, which permit enhanced binding to nucleic acid of pathogens. Higher psoralen binding levels and lower mutagenicity are described, resulting in safer, more efficient, and reliable inactivation of pathogens in blood products. The invention compemplates inactivation methods using the new psoralens which do not compromise the function of blood products for transfusion. In particular, 5'-primary amino psoralens are photoactivated in order to inactivate pathogens in biological fluids.
摘要:
Psoralen compound compositions are synthesized which have substitutions on the 4, 4′, 5′, and 8 positions of the psoralen, which yet permit their binding to nucleic acid of pathogens. Reaction conditions that photoactivate these bound psoralens result in covalent crosslinking to nucleic acid, thereby inactivating the pathogen. Higher psoralen binding levels and lower mutagenicity results in safer, more efficient, and reliable inactivation of pathogens. In addition to the psoralen compositions, the invention contemplates inactivating methods using the new psoralens.
摘要:
Psoralen compound compositions are synthesized which have substitutions on the 4, 4′, 5′, and 8 positions of the psoralen, which yet permit their binding to nucleic acid of pathogens. Reaction conditions that photoactivate these bound psoralens result in covalent crosslinking to nucleic acid, thereby inactivating the pathogen. Higher psoralen binding levels and lower mutagenicity results in safer, more efficient, and reliable inactivation of pathogens. In addition to the psoralen compositions, the invention contemplates inactivating methods using the new psoralens.
摘要:
Psoralen compound compositions are synthesized which have substitutions on the 4, 4', 5', and 8 positions of the psoralen, which yet permit their binding to nucleic acid of pathogens. Reaction conditions that photoactivate these bound psoralens result in covalent crosslinking to nucleic acid, thereby inactivating the pathogen. Higher psoralen binding levels and lower mutagenicity results in safer, more efficient, and reliable inactivation of pathogens. In addition to the psoralen compositions, the invention contemplates inactivating methods using the new psoralens.
摘要:
Novel methods and reagents for determining the presence of specific nucleic acid base sequences by employing crosslinking reactions of unique molecules capable of forming covalent bonds which are bonded with various labels or ligands for amplication.Single stranded nucleic acid probes are employed which contain complementary base sequences to nucleic acid target molecules. By first hybridizing and then forming covalent bonds between the probe and target the amount of label in the crosslinked hybrid can be measured as an extremely sensitive method for assaying for specific nucleic acid sequences.
摘要:
Psoralen compounds are synthesized which have substitutions on the 4, 4′, 5′, and 8 positions of the psoralen, which permit enhanced binding to nucleic acid of pathogens. Higher psoralen binding levels and lower mutagenicity are described, resulting in safer, more efficient, and reliable inactivation of pathogens in blood products. The invention contemplates inactivation methods using the new psoralens which do not compromise the function of blood products for transfusion.
摘要:
Psoralen compounds are synthesized which have substitutions on the 4, 4', 5', and 8 positions of the psoralen, which permit enhanced binding to nucleic add of pathogens. Higher psoralen binding levels and lower mutagenicity are described, resulting in safer, more efficient, and reliable inactivation of pathogens in blood products. The invention contemplates inactivation methods using the new psoralens which do not compromise the function of blood products for transfusion. In particular compounds with primary aminoalkyl substitutions on the 4' or 5' positions of psoralen are used to inactivate pathogens in blood products such as platelets.
摘要:
Psoralen compounds are synthesized which have substitutions on the 4,4',5', and 8 positions of the psoralen, which permit enhanced binding to nucleic acid of pathogens. Higher psoralen binding levels and lower mutagenicity are described, resulting in safer, more efficient, and reliable inactivation of pathogens in blood products. The invention contemplates inactivation methods using the new psoralens which do not compromise the function of blood products for transfusion. Also disclosed are compositions comprising 4' or 5'-primary amino substituted psoralens in a synthetic media.