Abstract:
A method and apparatus for supplying dissolved gases (such as oxygen, ozone, chlorine etc.) for chemical and biological processes is described. The methods and apparatus described are particularly suitable for use in the biodegradation of organic matter (such as in municipal and industrial wastewater treatment), and other uses. The apparatus may comprise a dissolved gas supply system.
Abstract:
Methods and apparatus employing inert gases injected into the lower level of sloping underground oil-bearing formations as a driving mechanism and water injected into the upper level of the formations as a gas blocking mechanism for increasing and extending the production of oil from underground formations is described. Also described is an inert gas oil production system comprising an exhaust gas processing system, a well inert gas and water injection system, an oil production well system, and a fuel gas generator. A hydraulically operated crude oil pump is also described.
Abstract:
A system is provided for removing dissolved metals from industrial wastewater by electrocoagulation. The system includes an electrocoagulation reactor with a DC power supply having an insulation support enclosure with positive and negative electrode plates disposed thereon. The electrode plates are insulated for each other but remain in direct contact with the wastewater as it flows between the electrodes. The DC power supply induces opposite charges on alternate electrodes thereby generating an electric field between adjacent electrodes to cause the electrodes to ionize and go into solution for interaction with the contaminants in the wastewater as it flows through the reactor. The reactor is housed in a pressure vessel container so the exterior pressure on the reactor is higher than its internal pressure preventing leakage of fluids and oxygen and hydrogen gases produced in the reactor by decomposition of water. The pressure vessel allows higher operating pressures to retain higher concentrations of dissolved oxygen and hydrogen dispersed in the water for reaction with the contaminants. The electrical supply includes explosion proof connection housings for operation in hazardous environments. The system also includes a cyclone filter for separating the precipitated solid particles from the fluid and automatic control of the reactor by monitoring fluid flow, temperature, pH, and pressure.
Abstract:
Methods and apparatus for contacting solids and fluids are provided, where the fluids are allowed to traverse a downward path through a plurality of vertically arranged chambers in which said solids are located. The solids may be transferred upwardly through the chambers to assure optimal contact between the solids and the fluids. The transfer of the solids may be accomplished by fluidizing the solids and transporting them in a carrier fluid in a fluid flow loop. At the desired transfer location, the solids are prevented from completing passage through the fluid loop.
Abstract:
A system is provided for removing impurities anticipated to be found in industrial waste water, which system is particularly well suited for waste water systems such as those used for laundry or vehicle washing operations. The system includes aeration, mixing/flocculating, and contact media mechanisms to remove suspended solids, hydrocarbons, organic materials and undesired dissolved minerals from the treated water.
Abstract:
Methods and apparatus employing membrane filtration in biodegradation processes for treatment of wastewater are described. An ultrafilter is described as well as a bioreactor system having an equalization system, a membrane bioreactor system, and a controller. Aeration systems for a membrane bioreactor, such as a mixer, and an ultrafilter subsystem are also described, as is a rotary membrane ultrafilter.
Abstract:
The present invention relates to methods and apparatus for separation of solids from liquids and separation of liquids from liquids (such as oil from water) by dissolved gas floatation. A dissolved gas floatation clarifier is described as is a liquid-gas mixer, a liquid-liquid mixer, and solid-liquid chemical feeders. The methods and apparatus of the present invention are particularly suitable for supplying dissolved air and mixing of chemicals for use in separation of solids in dissolved air floatation clarifiers.
Abstract:
An apparatus is provided for suction of a secondary fluid into a primary fluid through one or multiple gaps in contact with a venturi. The venturi imparts a high velocity on the primary fluid to flow across a gap in contact with the venturi and draw in the secondary fluid. The apparatus employs a linear venturi with the flow area, or opening, in the form of a narrow ring or narrow rectangle to increase the length of the gap in contact with the venturi. One gap is provided and positioned in contact with one side of the narrow venturi opening, or two gaps are provided having one positioned in contact each side of the narrow venturi opening. The linear venturi is housed in assemblies referred to as “eductors.” Various eductor embodiments are provided including: 1), cylindrical housings with one or multiple concentric linear venturi with openings in the form of narrow rings; 2), rectangular housings with a single rectangular linear venturi with an opening in the form of a narrow rectangle, with multiple rectangular linear venturi with inlets positioned around a primary fluid inlet to flow radially outward through the multiple venturi, with multiple rectangular linear venturi with outlets positioned around a mixing chamber to cause circulation of the flow of fluids; 3), a cylindrical housing with linear venturi with an opening in the form of a narrow ring adapted for inserting into piping; and 4), cylindrical housings with linear venturi with an opening in the form of a wide ring adapted for installation in piping.
Abstract:
Methods and apparatus employing inert gases injected into the lower level of sloping underground oil-bearing formations as a driving mechanism and water injected into the upper level of the formations as a gas blocking mechanism for increasing and extending the production of oil from underground formations is described. Also described is an inert gas oil production system comprising an exhaust gas processing system, a well inert gas and water injection system, an oil production well system, and a fuel gas generator. A hydraulically operated crude oil pump is also described.
Abstract:
Methods and apparatus for demulsifying oil in water by dilution and impact, and for separation of the oil and suspended solids by dissolved gas floatation, are described. A produced water treating system is also described. The produced water treating system may include a dissolved gas floatation clarifier system, an oil demulsification system, and a separation system. A demulsification subsystem is also described. The apparatus may include a liquid-liquid fluid mixer and a gas generator.