Abstract:
A voltage level shifting circuit for an integrated circuit system having an internal low voltage power supply (VCCL) and an external high voltage power supply (VCCH) is disclosed, the voltage level shifting circuit comprises a pair of cross coupled PMOS transistors connected to the VCCH, a NMOS transistor with a source connected to a ground (VSS) and a gate connected to a first signal swinging between the VCCL and the VSS, and a first blocking device coupled between the drain of the first PMOS transistor and a drain of the first NMOS transistor, the first blocking device being configured to conduct active current when the first signal is in static state or transitions from a logic HIGH to a logic LOW, and the first blocking device being configured to shut off active current when the first signal transitions from the logic LOW to the logic HIGH.
Abstract:
A fuse detection circuit has; a fuse (102) under detection to produce a first voltage in the first arm in response to a read signal; a reference fuse (108) to produce a second voltage in response to the read signal; a sensing circuit (124) to sense the first voltage and the second voltage as status value data of the fuse under detection; a latch circuit (136) to keep the data in the sensing circuit; and a timing control circuit (138) to turn off the fuse bridge circuit independently of the read signal.
Abstract:
A voltage level shifter having an internal low voltage power supply (VCCL) and an external high voltage power supply (VCCH) includes a first PMOS transistor and a second PMOS transistor each with a source connected to the VCCH, a gate of the first PMOS transistor being coupled to a drain of the second PMOS transistor, and a gate of the second PMOS transistor being coupled to a drain of the first PMOS transistor. The voltage level shifter further includes a first NMOS transistor with a source connected to a ground (VSS) and a gate connected to a first signal swinging between the VCCL and the VSS, and a first blocking device coupled between the drain of the first PMOS transistor and a drain of the first NMOS transistor, such that the voltage level shifter can operate at a lower VCCL.
Abstract:
A voltage level shifter having an internal low voltage power supply (VCCL) and an external high voltage power supply (VCCH) includes a first PMOS transistor and a second PMOS transistor each with a source connected to the VCCH, a gate of the first PMOS transistor being coupled to a drain of the second PMOS transistor, and a gate of the second PMOS transistor being coupled to a drain of the first PMOS transistor. The voltage level shifter further includes a first NMOS transistor with a source connected to a ground (VSS) and a gate connected to a first signal swinging between the VCCL and the VSS, and a first blocking device coupled between the drain of the first PMOS transistor and a drain of the first NMOS transistor, such that the voltage level shifter can operate at a lower VCCL.
Abstract:
In some embodiments related to reading data in a memory cell, the data is driven to a local bit line, which drives a local sense amplifier. Depending on the logic level of the data in the memory cell and thus the local bit line, the local sense amplifier transfers the data on the local bit line to a global bit line. A neighbor global bit line is used as a reference for a global sense amplifier to read the differential data on the global bit line and the neighbor global bit line.
Abstract:
An integrated circuit structure includes a static random access memory (SRAM) cell. The SRAM cell includes a pull-up transistor and a pull-down transistor forming an inverter with the pull-up transistor. The pull-down transistor includes a front gate connected to a gate of the pull-up transistor, and a back-gate decoupled from the front gate.
Abstract:
An array of static random access memory (SRAM) cells arranged in a plurality of rows and a plurality of columns includes a plurality of VSS lines connected to VSS nodes of the SRAM cells, with each VSS line connected to the SRAM cells in a same column. The plurality of VSS lines includes a first VSS line connected to a first column of the SRAM cells; and a second VSS line connected to a second column of the SRAM cells, wherein the first and the second VSS lines are disconnected from each other.
Abstract:
An array of static random access memory (SRAM) cells arranged in a plurality of rows and a plurality of columns includes a plurality of VSS lines connected to VSS nodes of the SRAM cells, with each VSS line connected to the SRAM cells in a same column. The plurality of VSS lines includes a first VSS line connected to a first column of the SRAM cells; and a second VSS line connected to a second column of the SRAM cells, wherein the first and the second VSS lines are disconnected from each other.
Abstract:
A static random access memory cell comprising a first inverter, a second inverter, a first transistor, a second transistor, and a third transistor. The first inverter is cross-coupled with the second inverter. The first transistor is connected with a write word line, a write bit line, and a first output node of the first inverter. The second transistor is connected with a complementary write bit line, the write word line, and a second output node of the second inverter. The third transistor is connected with a read bit line, a read word line, and the first input node of the first inverter to form a read port transistor, and a read port is formed. The read port transistor has a feature of asymmetric threshold voltage, and the read bit line swing can be expanded by the decrease of clamping current or the boosted read bit line.
Abstract:
An integrated circuit structure includes a static random access memory (SRAM) cell; a first power supply node connected to the SRAM cell, wherein the first power supply node is configured to provide a first positive power supply voltage to the SRAM cell; and a bit-line connected to the SRAM cell. A negative-voltage generator is coupled to, and configured to output a negative voltage to, the bit-line, wherein the negative-voltage generator is so configured that the negative voltage decreases in response to a decrease in the first positive power supply voltage and increases in response to an increase in the first positive supply voltage.