Abstract:
A wireless network with at least one base station and a plurality of associated terminals for the exchange of payload data and control data and at least one common transmission channel which is available for access to several terminals is described. The base station is configured to control access to the common transmission channel and the terminals are configured to send at least an access signal to the base station for the purpose of obtaining access to the common transmission channel. Different start moments and different preambles can be assigned to the terminals for transmitting their respective access signals.
Abstract:
The invention relates to a radiation detector (100′) and a method for detecting radiation, particularly for detecting X-rays (X) in a CT imaging apparatus (1000′). According to a preferred embodiment, the radiation detector (100′) comprises a conversion element (110) for converting incident radiation (X) into electrical signals which are read out and processed by a readout circuit (120). A heating device comprising the heat source (135′) of a Peltier element is provided with which the conversion element (110) can controllably be heated in order to reduce negative effects, e.g. of polarization, on image accuracy, wherein the heat sink (137′) of the Peltier element is oriented towards the readout circuit.
Abstract:
The present invention relates to the correction of X-ray image information, e.g. the correction of X-ray image information regarding persistent currents in X-ray detector elements. X-ray detectors may be embodied as photoconductors with ohmic contacts, which output a photo current depending on the energy and amount of photons impinging on a respective photoconductor pixel. Such photoconductors may exhibit a photoconductive gain, i.e. the measured current when irradiated by X-ray is higher than the current, which would result from impinging photons only generating electron-hole pairs. To compensate for photoconductive gain a method (50) for image correction of X-ray image information is provided, comprising receiving (52) readout information of an X-ray detector element (14), wherein the readout information is dependent on impinging X-radiation (20) generating a photo current and compensating (54) the readout information for a photoconductive gain employing compensation information.
Abstract:
A radiation detector (10) includes a semiconductor element (1) for generating positive holes and electrons, a cathode (2) formed on a first surface of the semiconductor element (1) and a plurality of segmented anodes (3) formed on a second surface of the semiconductor element (1), the second surface being in opposed relation to the first surface. Additionally, a plurality of segmented steering electrodes (5a) are positioned adjacent the plurality of segmented anodes (3). Moreover, a plurality of doping atoms are located above at least a portion of the plurality of segmented anodes (3) for reducing the voltage difference between the plurality of segmented anodes (3) and the plurality of segmented steering electrodes (5a).
Abstract:
The present invention discloses a pixilated direct conversion photon counting detector with a direct conversion material layer and a pixilated electrode. Individual electrode pixels are segmented into three segments (510, 520, 530), wherein one of the segments (520) is operated at a more electrically repellant value than that of the other two (510, 530). Said other two segments are connected to electric circuitry (610, 611, 620, 630) that is arranged to generate signals which are indicative of a count of electrons or holes that approach each of the respective electrode pixel segments and to subtract the generated signals from each other.
Abstract:
The invention relates to radiation detection with a directly converting semiconductor layer for converting an incident radiation into electrical signals. Sub-band infra-red (IR) irradiation considerably reduces polarization in the directly converting semi-conductor material when irradiated, so that counting is possible at higher tube currents without any baseline shift. An IR irradiation device is integrated into the readout circuit to which the crystal is flip-chip bonded in order to enable 4-side-buttable crystals.
Abstract:
A radiation detector (10) includes a semiconductor element (1) for generating positive holes and electrons, a cathode (2) formed on a first surface of the semiconductor element (1) and a plurality of segmented anodes (3) formed on a second surface of the semiconductor element (1), the second surface being in opposed relation to the first surface. Additionally, a plurality of segmented steering electrodes (5a) are positioned adjacent the plurality of segmented anodes (3). Moreover, a plurality of doping atoms are located above at least a portion of the plurality of segmented anodes (3) for reducing the voltage difference between the plurality of segmented anodes (3) and the plurality of segmented steering electrodes (5a).
Abstract:
An apparatus includes a pulse shaper (120) for receiving signals indicative of detected photons and generating a plurality of pulses therefrom to form a pulse train (200) and a peak detector (150) for sampling the pulse train (200) at an output of the pulse shaper (120). The peak detector (150) includes a circuit (300) for selectively detecting and sampling a maximum (202a, b, c) and a minimum (204a, b) value of the pulse train (200). The maximum (202a, b, c) and minimum (204a, b) values sampled are then converted from analog-to-digital format via an analog-to-digital converter (160).
Abstract:
In radiation-sensitive detector devices, such as direct conversion detectors, charges are drifting within an externally applied electric field towards collecting electrodes (4), which are segmented (e.g. representing a pixel array). At the gaps between segments, electrical field lines can leave the detector, and charges drifting along those field lines can be trapped within the gap. This can be avoided by external electrodes (8) which push electric field lines back into the direct conversion material.
Abstract:
A detector signal is corrected by superimposing the detector signal with a correction signal. For providing a valid correction signal, a sampling pulse is periodically or randomly provided. The sampling pulse serves as the initiator for sampling a process signal. During the sampling, the process signal is observed. In case a pulse at the process signal is detected, the sampling is assumed as not being suitable to correct the detector signal, since the pulse affects the process signal. Otherwise, the process signal is further observed during a validation period to validate whether the sampled process value of the process signal has already been influenced by an upcoming pulse at the process signal. In case the sampling is assumed as valid, the sampled process value is used as a basis for providing the correction signal.