摘要:
An improved multilevel interconnect structure is provided. The interconnect structure includes several levels of conductors, wherein conductors on one level are staggered with respect to conductors on another level. In densely spaced interconnect areas, interposed conductors are drawn to dissimilar elevational levels to lessen the capacitive coupling between the interconnects. By staggering every other interconnect line in the densely patterned areas, the interconnects are capable of carrying a larger amount of current with minimal capacitive coupling therebetween.
摘要:
A method of stitching segments defined by adjacent image patterns of a photolithographic system during the manufacture of a semiconductor device is disclosed. The method includes forming a material over a semiconductor substrate, projecting a first image pattern over the substrate that defines a first segment and a contact region, projecting a second image pattern over the substrate that defines a second segment with an end that overlaps the contact region, and removing a portion of the material corresponding to the first and second image patterns to form the first and second segments stitched by a portion of the contact region. The contact region has a greater width than the first and second segments. In this manner, the contact region accommodates misalignments that might otherwise lead to inadequate coupling or decoupling between the first and second segments. The invention is particularly well-suited for stitching polysilicon gates of N-channel and P-channel devices.
摘要:
Dopant atoms have coefficients of diffusion that vary due to implant damage. Damaged regions are selected and created by implanting silicon atoms into a silicon substrate prior to formation of a gate electrode. The silicon atoms act as a getter for attracting selected dopants that are trapped in the silicon substrate. Dopants are implanted in the vicinity of the damaged regions and diffused by transient-enhanced diffusion (TED) into the damaged regions by thermal cycling to accumulate dopant atoms. Transient-enhanced diffusion improves the doping of a substrate by enhancing the diffusion of dopants at relatively low anneal temperatures. Dopant accumulation sets particular selected electrical properties without placing an excessive amount of dopant in regions adjacent to junctions for purposes including threshold control for a field device, threshold setting for a transistor, and prevention of device punchthrough.
摘要:
A fabrication process that produces an air gap dielectric in which a multi-level interconnect structure is formed upon a temporary supporting material. The temporary material is subsequently dissolved away leaving behind an intralevel and an interlevel dielectric comprised of air. In one embodiment of the invention, a first interconnect level is formed on a barrier layer. A temporary support material is then formed over the first interconnect level and a second level of interconnect is formed on the temporary support material. Prior to formation of the second interconnect level, a plurality of pillar openings are formed in the temporary material and filled with a conductive material. In addition to providing a contact between the first and second level of interconnects, the pillars provide mechanical support for the second interconnect level. The temporary material is dissolved in a solution that attacks the temporary material but leaves the interconnect material and pillar material intact. In one embodiment of the invention, a passivation layer is formed on the second interconnect level prior to dissolving the temporary material. The air gap dielectric can be used with more than two levels of interconnect, if desired.
摘要:
A transistor with a buried insulative layer beneath a channel region is disclosed. Unlike conventional SIMOX, the buried insulative layer has a top surface beneath the channel region that is closer than bottom surfaces of the source and drain to the top surface of the substrate. Preferably, the buried insulative layer is formed by implanting oxygen into the substrate and then performing a high-temperature anneal so that the implanted oxygen reacts with silicon in the substrate to form a continuous stoichiometric layer of silicon dioxide. Advantageously, the buried insulative layer provides a diffusion barrier and an electrical isolation barrier for the channel region.
摘要:
A region of damaged silicon is exploited as a gettering region for gettering impurities in a silicon substrate. The region of damaged silicon is formed between source and drain regions of a device by implanting silicon atoms into the silicon substrate after the formation of a gate electrode of the device. The damaged region is subsequently annealed and, during the annealing process, dopant atoms such as boron segregate to the region, locally increasing the dopant concentration in the region. The previously damaged region is in a location that determine the punchthrough characteristics of the device. The silicon implant for creating a gettering effect is performed after gate formation so that the region immediately beneath the junction is maintained at a lower dopant concentration to reduce junction capacitance. Silicon is implanted in the vicinity of a polysilicon gate to induce transient-enhanced diffusion (TED) of dopant atoms such as boron or phosphorus for control of punchthrough characteristics of a device. A punchthrough control implant is performed following formation of gate electrodes on a substrate using a self-aligned gettering implant.
摘要:
A reticle provides an image pattern and compensates for a lens error in a photolithographic system. The reticle is structurally modified using image displacement data indicative of the lens error. The reticle can be structurally modified by adjusting the configuration (or layout) of radiation-transmitting regions, for instance by adjusting a chrome pattern on the top surface of a quartz base. Alternatively, the reticle can be structurally modified by adjusting the curvature of the reticle, for instance by providing a chrome pattern on the top surface of a quartz base and grinding away portions of the bottom surface of the quartz base. The image displacement data may also vary as a function of lens heating so that the reticle compensates for lens heating associated with the reticle pattern.
摘要:
A composite gate electrode layer incorporates a diffusion-retarding barrier layer disposed at the bottom of the gate electrode layer to reduce the amount of dopant which diffuses into the gate dielectric layer from the gate electrode layer. A lower nitrogen-containing gate electrode layer provides a diffusion-retarding barrier layer against dopant diffusion into the gate dielectric layer disposed therebelow, and an upper gate electrode layer is formed upon the lower layer and is doped to form a highly conductive layer. Together the first and second gate electrode layers form a composite gate electrode layer which incorporates a diffusion-retarding barrier layer adjacent to the underlying gate dielectric layer. The barrier layer may be formed by annealing a first polysilicon layer in a nitrogen-containing ambient, such as N.sub.2, NO, N.sub.2 O, and NH.sub.3, by implanting a nitrogen-containing material, such as elemental or molecular nitrogen, into a first polysilicon layer, and by in-situ depositing a nitrogen-doped first polysilicon layer. Diffusion of dopants into the gate dielectric layer may be retarded, as most dopant atoms are prevented from diffusing from the composite gate electrode layer at all. In addition, the nitrogen concentration within the gate dielectric layer, particularly at or near the substrate interface, may be maintained at lower concentrations than otherwise necessary to prevent dopant diffusion into the underlying substrate. The present invention is particularly well suited to thin gate dielectrics, such as a those having a thickness less than approximately 60 .ANG. when using a p-type dopant, such as boron.
摘要:
A method of manufacturing an integrated circuit so as to reduce overlap between an LDD region and a gate electrode is disclosed. The method includes forming a gate electrode on a gate insulator on a semiconductor substrate, implanting a lightly-doped drain (LDD) region in the substrate using the gate electrode as a mask, removing a lateral portion of the gate electrode after implanting the LDD region, and then laterally diffusing the LDD region into the substrate such that a lateral edge of the LDD region is substantially aligned with a lateral edge of the gate electrode. Preferably, the lateral portion of the gate electrode is removed using an isotropic etch. The method further includes forming a spacer adjacent to an edge of the gate electrode after removing the lateral portion, and then implanting a heavily-doped region using the spacer and gate electrode as an implant mask.
摘要:
A interconnect structure is provided having a conductor with enhanced thickness. The conductor includes an upper portion and a lower portion, wherein the lower portion geometry is sufficient to increase the current-carrying capacity beyond that provided by the upper portion. The lower portion is formed by filling a trench within an upper dielectric region, and the upper portion is formed by selectively removing a conductive material from the upper dielectric surface except for regions directly above the lower portion. The upper and lower portions thereby form a conductor of enhanced cross-section which can be produced by modifying a via-etch mask, rather than having to reconfigure and/or move interconnect features formed by a metal mask.