Abstract:
A light valve (10) includes a layer of a liquid crystal (16), a MOS substrate structure (18) with a dielectric layer (24) and a semiconductor layer (26), and an optically isolating mirror (14) between the liquid crystal layer (16) and the substrate structure (18). An external AC biasing voltage is applied across the MOS substrate (18) and the liquid crystal layer (16). The liquid crystal layer (16) is sufficiently thick that it operates in the surface birefringent mode with a high contrast ratio and a short response time to changes in the write-in light beam, when a sufficiently high biasing voltage V.sub.p is applied.
Abstract:
A plasmonic phase modulator and a method of phase modulation employ modulation of surface plasmons. The plasmonic phase modulator includes a semiconductor substrate configured to provide a surface charge that forms a plasmonic channel at the substrate surface. The modulator further includes an electrode and an insulator between the electrode and the semiconductor substrate. The electrode is configured to provide an electric field that influences the surface charge. The electric field includes a bias field component and a modulation field component. The surface plasmon is supported within the plasmonic channel at an interface between the semiconductor substrate surface and the insulator. A phase of the surface plasmon in the plasmonic channel is modulated by changes in the electric field. The method includes propagating the surface plasmon in the plasmonic channel and varying the modulation field component to modulate the phase of the propagating surface plasmon.
Abstract:
An apparatus and methods for encoding and decoding data are disclosed. The method for transmitting and receiving data allows for coding and decoding each bit of data with a different code. The transmitter and receiver devices allow encoding and decoding, respectively, each bit of data with different a code.
Abstract:
A vertical cavity modulator/detector (VCMD) device and a method for modulating and detecting light are disclosed. The VCMD device contains an n-type contact layer, a transparent tuning layer, a multiple quantum well structure, a p-type contact layer, a low reflectance mirror arranged to be an input for a light that is to be modulated and a light that is to be detected, and a high reflectance mirror, wherein said n-type contact layer, said transparent tuning layer, said multiple quantum well structure and said p-type contact layer are arranged in a stack between said low reflectance mirror and said high reflectance back mirror.
Abstract:
An agile spread spectrum waveform generator comprises a photonic oscillator and an optical heterodyne synthesizer. The photonic oscillator comprises a multi-tone optical comb generator for generating a series of RF comb lines on an optical carrier. The optical heterodyne synthesizer includes first and second phase-locked lasers; the first laser feeding the multi-tone optical comb generator and the second laser comprising a rapidly wavelength-tunable single tone laser whose output light provides a frequency translation reference. A photodetector is provided for heterodyning the frequency translation reference with the optical output of the photonic oscillator to generate an agile spread spectrum waveform.
Abstract:
A photonic oscillator includes an optical transceiver that serves the dual purpose of detecting a feedback RF lightwave signal carried on a laser beam and electrically filtering the RF lightwave signal to modulate the RF lightwave signal in accordance therewith, to thereby set up steady state oscillations in the modulated RF lightwave signal and thereby generate a multi-tone oscillating lightwave.
Abstract:
A conformal retro-modulator optical apparatus. The apparatus includes an array of multiple quantum well devices disposed in a thin array. A plastic support element is bonded to the thin array, the plastic support element having a thickness greater that of the thin array. The plastic support element is preferably plastic at elevated temperatures above room temperature, thereby allowing the plastic support element and the thin array of multiple well device disposed therein to conform to a predetermined shape, yet being rigid at room temperature.
Abstract:
In one implementation of the present invention, a method is provided for frequency tuning of a photonic oscillator. The method includes supplying an optical signal, for example laser light, which is modulated, delayed, and then converted to an electrical signal. The electrical signal is amplified, and used in modulating the optical signal. With this implementation, the frequency of the an output signal of the photonic oscillator is adjusted by adjusting a bias voltage of the amplifier. In some implementations, adjusting the frequency of the output signal further includes using a frequency lock loop circuit. In some implementations, adjusting the frequency of an output signal of the photonic oscillator further comprises adjusting at least one of an phase shifter in series with the amplifier, an optical fiber stretcher, or a bias voltage of a second amplifier. In one embodiment of the present invention, a photonic oscillator is provided including a laser and an optical modulator coupled to the laser. A lightwave delay path is coupled to the optical modulator. In some embodiments, dual lightwave delay paths are provided, such as a long loop delay path and a short loop delay path. A photodetector is coupled between the lightwave delay path and an amplifier. Typically, a bandpass filter is coupled between the amplifier and the modulating input of the optical modulator. A control circuit coupled to the amplifier is constructed so as to be capable of adjusting a bias power to the amplifier so as to shift a frequency of an output of the photonic oscillator. In some embodiments, the control circuit may include a frequency lock loop circuit.
Abstract:
A method for transferring layers containing semiconductor devices and/or circuits to substrates other than those on which these semiconductor devices and/or circuits have been originally fabricated. The method comprises fabricating the semiconductor devices and/or circuits, coating them with a protective layer of photoresist followed by coating with a layer of wax. A special perforated structure is then also wax coated and the waxed surface of the structure is brought into a contact with the waxed surface of photoresist. The original seed substrate is removed and the exposed surface is then coated with adhesive followed by dissolving wax through the openings in the perforated structure and attaching the layer with semiconductor devices and/or circuits to another permanent substrate. As an alternative, a disk-shaped water-soluble structure can be used instead of the perforated structure.
Abstract:
A photoconductive substrate is provided to voltage modulate a liquid crystal layer in response to input light. The substrate is partitioned into electrically isolated pixels to eliminate lateral spread of charge carriers therein, and increase the dynamic range of the liquid crystal light valve while preserving resolution. The substrate is partitioned by forming an interconnecting network of deep trenches in a surface thereof, and filling the trenches with an insulating material such as silicon dioxide. The opposite surface of the substrate is etched away to expose the silicon dioxide in the trenches, thereby providing the substrate with partitions which extend completely therethrough between the opposite surfaces.