Abstract:
Exemplary embodiments are directed to wireless power transfer. A method may include wirelessly receiving power from a near field in a first near field coupling mode region with at least one parasitic antenna coupled to a housing having a chargeable device positioned therein. The method may further include generating an enhanced near field from the near field with the at least one parasitic antenna and wirelessly receiving power from the enhanced near field at an at least one receive antenna coupled to the chargeable device.
Abstract:
Exemplary embodiments are directed to wireless power transfer using magnetic resonance in a coupling mode region between a charging base (CB) and a remote system such as a battery electric vehicle (BEV). The wireless power transfer can occur from the CB to the remote system and from the remote system to the CB. Load adaptation and power control methods can be employed to adjust the amount of power transferred over the wireless power link, while maintaining transfer efficiency.
Abstract:
Exemplary embodiments are directed to wireless power transfer. A method may include wirelessly receiving power from a near field in a first near field coupling mode region with at least one parasitic antenna coupled to a housing having a chargeable device positioned therein. The method may further include generating an enhanced near field from the near field with the at least one parasitic antenna and wirelessly receiving power from the enhanced near field at an at least one receive antenna coupled to the chargeable device.
Abstract:
Exemplary embodiments are directed to wireless power transfer. A wireless power transmitter includes a transmit antenna configured as a resonant tank including a loop inductor and an antenna capacitance. The transmitter further includes an amplifier configured to drive the transmit antenna and a matching circuit operably coupled between the transmit antenna and the amplifier. The transmitter also includes a capacitor integrating the antenna capacitance and a matching circuit capacitance.
Abstract:
Exemplary embodiments are directed to wireless power transfer. A portable wireless power charger includes an antenna configured to generate a magnetic near-field for coupling of wireless power to a wireless powered device including a receiver. The antenna is substantially disposed around the perimeter of the charging pad. The portable wireless power charger further includes a feeder cable for coupling the input power to the charging pad.
Abstract:
A wirelessly-powered device that uses a ferrite based antenna. The ferrite antenna can be tuned to reduce the amount of flux within the housing.
Abstract:
Wireless power transfer is received using a magneto mechanical system. Movement of the magneto mechanical system is converted to electric power.
Abstract:
Techniques for wireless power transmission. An antenna has a part that amplifies a flux to make the antenna have a larger effective size than its actual size.
Abstract:
For the purpose of channel state estimation at the receiver end, a reference signal (f.sub.q (t)) is added to and is transmitted with the data signal (f.sub.i (t)) containing the actual information. The addition of the reference signal (f.sub.q (t)) to the data signal (f.sub.i (t)) is effected by means of a quadrature modulation with the reference signal on the Q-axis and with the data signal on the I-axis, the envelopes being selected so that the magnitude of the complex envelope is constant. The receiver has a function stage for preprocessing the receive signal, for quadrature detection of the data signal elements and reference signal elements (y.sub.i) and (b.sub.i) respectively, for selection of the data/reference signal and for estimating the channel state. This permits the operation of non-linear final stages of the transmitter and a maximum energy output from the transmitter, and the requirements of the short-wave transmission such as very low signal-to-noise ratio and signal interference ratio, fading, slightly drifting local oscillators and time bases, as well as high noise burst frequency are taken account of in an optimum manner. In addition the send signal has a narrow bandwidth and a low sensitivity to bit slip, which increases the connection probability and the robustness of the transmission.