Abstract:
A multiple-source array for use in thermal printing uses source interleaving to avoid overlapping of the dye-transfer tracks upon the donor material in a single pass. This prevents the formation of artifacts in the image because of thermal interaction among either the sources or printing spots. This also permits the thermal array to be oriented predominantly perpendicular to the first-scan direction so that any arcuate shape of the array causes minimal spacing variations of the scan lines and minimizes spacing variations in focus for laser-thermal printing or document source separation for resistive-head thermal printing. Interleaving also allows multiple printheads to be used even when they have different printing characteristics. The array includes independently addressable printing element data channels and a data distributor allowing interleaving to be accomplished in the printhead. The printhead also includes pixel replication circuitry that allows pixel replication in both the fast and slow scan directions.
Abstract:
A system for mounting a flexographic printing plate to a cylinder includes a flexographic printing plate with a first alignment feature; a fixture with a second alignment feature which matches the first alignment feature; aligning the plate to the fixture using the first and second alignment features; mounting the cylinder in the fixture in alignment with the second alignment feature; and transferring the plate from the fixture to the cylinder maintaining registration.
Abstract:
A method of encoding data in printed halftone image features on a receiver includes providing a relief printing member; encoding first embedded data in the relief printing member by modifying surfaces of a first plurality of halftone dots; and printing the halftone image on the receiver.
Abstract:
A method of encoding data in printed solid image features on a receiver includes providing a relief printing member; modifying at least one surface of the relief printing member within a boundary of a solid image feature; and printing the encoded data in at least one solid image feature on the receiver.
Abstract:
A relief (or flexographic) printing precursor has first and second radiation-sensitive layers, or a plurality of radiation-sensitive layers. The first radiation-sensitive layer is sensitive to a first imaging radiation having a first λmax. The second radiation-sensitive layer is disposed on the first radiation-sensitive layer and is sensitive to a second imaging radiation having a second λmax that differs from the first λmax by at least 25 nm. An infrared radiation ablatable layer can be present and is opaque or insensitive to the first and second imaging radiations and contains an infrared radiation absorbing compound. These relief printing precursors can be used to prepare flexographic printing plates, cylinders, or sleeves where the ablatable layer is used to form an integral mask on the element. Use of the invention provides a relief image without any loss in the strength of the small dots and can be carried out using multiple irradiation steps using the same apparatus.
Abstract:
A method for printing a halftone digital image on both a printing press and a color proofer using the same binary digital data which comprises making a printing plate from the binary digital data; making a press sheet using a press with the printing plate; sending the binary digital data to a dot-gain processor for conditioning the binary digital data to introduce a predetermined level of dot-gain; transmitting the conditioned binary digital data to the color proofer; and printing a halftone color proof on the color proofer.
Abstract:
The invention relates to an apparatus for printing a multibit per pixel image (10) from a halftone binary digital bitmap having pixels having a multibit per pixel image memory for receiving the multibit per pixel image; a lookup table (16) external to the memory disposed in a programmable gate array (18) for converting the multibit per pixel image to a base duty cycle (20) wherein the base duty cycle is disposed in the programmable gate array and is adapted for creating a modulated drive signal (22) from the base duty cycle to modulate an exposure (24) for each pixel in the multibit per pixel image; and a printer (28) adapted for using the modulated exposure to print an image, having a dpi greater than 1400, further comprising a drum (32) capable of spinning, and an encoder (34) disposed on the drum for providing a home signal (36) and a pixel rate (38).
Abstract:
The invention is a method for printing a color proof from an initial halftone bitmap file (10) having individual dots (10a, 10b, 10c, 10d) using a spatial filter (20) which is created from a calibration curve (30) for a printing press (380). The method further consists of sending an initial halftone bitmap file consisting of individual dots to the spatial filter creating a filtered output (40), quantizing the filtered output from the spatial filter to “n” levels to create a quantized image (50), transmitting the quantized image to a color printer (70), and printing a halftone color proof (80) on the color printer.
Abstract:
A printer media supply spool adapted to allow the printer to sense type of media, and method of assembling same. The supply spool comprises a shaft having a supply of media ribbon wound thereabout. A transceiver unit is disposed proximate the shaft. The transceiver is capable of transmitting a first electromagnetic field and sensing a second electromagnetic field. A transponder including a semi-conductor chip is integrally connected to the shaft and has encoded data stored in the chip indicative of the type of media ribbon. The chip is capable of receiving the first electromagnetic field to power the chip and then generating the second electromagnetic field as the chip is powered. The second electromagnetic field is characteristic of the data stored in the chip. The transceiver unit senses the second electromagnetic field, which second electromagnetic field has the data subsumed therein.
Abstract:
An image processing apparatus (10), typically for sheet thermal print media. The image processing apparatus (10) typically comprises a vacuum imaging drum (300) for holding thermal print media (32) and dye donor sheet material (36) in registration on the vacuum imaging drum (300). A printhead (500), driven by a lead screw (250), moves along a line parallel to a longitudinal axis (301) of the vacuum imaging drum (300) as the vacuum imaging drum (300) rotates. The printhead (500) receives information signals and produces radiation which is directed to the dye donor material (36) which causes color to transfer from the dye donor material (36) to the thermal print media (32). A stepper motor (162) that turns the lead screw (250) can run in a microstepping mode. To determine an optimal lead screw (250) pitch, a method of this invention utilizes the characteristic sinusoidal positional error (154) behavior of the stepper motor (162) that is at 4 times the frequency of the composite microstepping current waveform, and calculates the ideal value (in/rev or mm/rev) based on image resolution, number of full steps per revolution of the stepper motor (162), and the number of pixels per motor step. An integral, power of 2 multiple of the ideal value, based on suitability of stepper motor (162) speed, is then used to derive the lead screw (250) pitch. Based on the lead screw (250) pitch selected, the phase angle relationship of positional error (154), swath-to-swath, varies within a small set of discrete values, based on the number of channels used in the writing swath (450).