Abstract:
A method of generating Acknowledgement/Negative Acknowledgement (ACK/NACK) information by a user equipment (UE) in a wireless communication system is discussed. The method includes receiving, by the UE from a base station (BS), a plurality of codewords through a plurality of downlink frequency bands related to a plurality of downlink carriers, wherein the UE is configured with a 1-codeword mode or a 2-codeword mode for each of the plurality of downlink frequency bands independently, and wherein a number of supported codewords is one for the 1-codeword mode or two for the 2-codeword mode; determining, by the UE, a total number of ACK/NACK bits, wherein the total number of ACK/NACK bits is determined based on a total number of the plurality of downlink carriers and the number of supported codewords; and generating, by the UE, a sequence of the ACK/NACK bits based on the total number of the ACK/NACK bits.
Abstract:
A method of generating Acknowledgement/Negative Acknowledgement (ACK/NACK) information by a user equipment (UE) in a wireless communication system is discussed. The method includes receiving, by the UE from a base station (BS), a plurality of codewords through a plurality of downlink frequency bands related to a plurality of downlink carriers, wherein the UE is configured with a 1-codeword mode or a 2-codeword mode for each of the plurality of downlink frequency bands independently, and wherein a number of supported codewords is one for the 1-codeword mode or two for the 2-codeword mode; determining, by the UE, a total number of ACK/NACK bits, wherein the total number of ACK/NACK bits is determined based on a total number of the plurality of downlink carriers and the number of supported codewords; and generating, by the UE, a sequence of the ACK/NACK bits based on the total number of the ACK/NACK bits.
Abstract:
A method is provided for generating Acknowledgement/Negative Acknowledgement (ACK/NACK) information by a user equipment (UE) in a wireless communication system supporting carrier aggregation. The UE receives, from a base station (BS), a plurality of codewords through a plurality of downlink carriers. Each of the plurality of downlink carriers support one or more codewords according to a transmission mode. The transmission mode is independently configured per each of the plurality of downlink carriers. The UE determines a total number of ACK/NACK bits, and generates a sequence of the ACK/NACK bits according to the total number of the ACK/NACK bits. The UE determines the total number of ACK/NACK bits based on a total number of the plurality of downlink carriers and a type of each transmission mode independently configured per each of the plurality of downlink carriers.
Abstract:
Embodiments of the present invention are directed to a method and apparatus for transmitting and receiving a control signal (for example, PDCCH signal) in an asymmetric multicarrier environment. The method for transmitting a control signal for an asymmetric multicarrier in a wireless connection system according to one embodiment of the present invention comprises: determining the size of a carrier indicator field (CIF) indicating a downlink component carrier (DL CC) by which downlink data is transmitted, on the basis of a maximum value of the number of DL CCs and of the number of uplink component carriers (UL CCs) being managed in a base station; transmitting the CIF on a 1st DL CC to a terminal through a physical downlink control channel (PDCCH); and transmitting downlink data on a 2nd DL CC indicated by the CIF to the terminal through a physical downlink shared channel (PDSCH).
Abstract:
A method for transmitting a downlink control channel in a mobile communication system and a method for mapping the control channel to physical resources using a block interleaver are provided. In order to transmit a downlink control channel in a mobile communication system, information bits are modulated to generate one or more modulation symbols according to a specific modulation scheme, the modulation symbols are interleaved using a block interleaver, and the interleaved modulated symbols are mapped to resource elements allocated for transmission of at least one control channel in a subframe, thereby transmitting the at least one control channel.
Abstract:
A method is provided for generating Acknowledgement/Negative Acknowledgement (ACK/NACK) information at a user equipment in a wireless communication system. The user equipment receives a plurality of codewords corresponding to data blocks through a plurality of downlink carriers from a base station, wherein each of the plurality of downlink carriers carries one or more codewords. The user equipment generates the ACK/NACK information by concatenating ACK/NACK bits corresponding to the plurality of codewords. When a corresponding downlink carrier carries two or more codewords, the ACK/NACK bits corresponding to the two or more codewords associated with the corresponding downlink carrier are concatenated in accordance with an index order of a corresponding data block. The ACK/NACK bits concatenated in accordance with the index order of the corresponding data block associated with each of the downlink carriers are concatenated again in accordance with an index order of a corresponding downlink carrier.
Abstract:
A method is provided for transmitting control information from a terminal in a wireless communication system. Physical downlink shared channels (PDSCHs) are received on a primary component carrier and PDSCHs are received on a secondary component carrier. The primary component carrier and the secondary component carrier are configured for the terminal. A first acknowledgement (ACK)/negative acknowledgement (NACK) feedback is transmitted for the received PDSCHs on a first physical uplink control channel (PUCCH) resource corresponding to a first antenna port and a second ACK/NACK feedback is transmitted for the received PDSCHs on a second PUCCH resource corresponding to a second antenna port. The first antenna port and the second antenna port are configured for the terminal. The first ACK/NACK feedback and the second ACK/NACK feedback are identical.
Abstract:
The present invention relates to wideband wireless access system, and more particularly to an effective method for transmitting control information during the combination of multiple carriers. As one embodiment of the present invention, there is provided a method by which a base station allocates a carrier to a terminal in a wideband wireless access system supporting multiple carriers, the method comprising: transmitting, to the terminal, a terminal specific or terminal group specific carrier allocation information that includes information about at least one of control information and data; and transmitting, to the terminal, a carrier combination control information that includes information about a change in the at least one candidate carrier available.
Abstract:
A method of activating or deactivating frequency resources at a terminal configured with a primary frequency resource and one or more non-primary frequency resources in a wireless communication system, and the terminal are discussed. The method according to one embodiment includes receiving a medium access control (MAC) signal for activating the one or more non-primary frequency resources; activating the one or more non-primary frequency resources; and deactivating the one or more non-primary frequency resources on expiry of a specific time period configured by radio resource control (RRC) signaling, the specific time period being for which of the one or more non-primary frequency resources are activated.
Abstract:
A method for monitoring a control channel in a multiple carrier system, and a user equipment (UE) therefore are discussed. The method according to one embodiment includes, if an aggregation of carriers is configured and if a carrier indicator field (CIF) is configured, monitoring a plurality of downlink control channels within a plurality of UE-specific search spaces of a first carrier; and receiving downlink control information (DCI) on at least one of the plurality of the downlink control channels, which is successfully decoded, via the first carrier. The DCI includes scheduling information on either a downlink channel or an uplink channel in a second carrier.