Abstract:
According to an embodiment, provided is an electromagnetic wave shielding structure comprising: a shielding structure encompassing an electromagnetic wave generation source, and having a surface roughness on a surface thereof; and an electromagnetic wave shielding metal layer arranged on the surface of the shielding structure so as to encompass the shielding structure, wherein the upper side and the lateral side of the shielding structure have different surface roughness.
Abstract:
Disclosed are a soft magnetic alloy and a wireless charging apparatus including the soft magnetic alloy. The soft magnetic alloy has a chemical formula expressed as Fe100-x-yCuxBy (wherein x ranges from 0.1 at % to 1.7 at % and y ranges from 2.3 at % to 9.6 at %). Without adding any expensive alloying element, only iron (Fe), copper (Cu), and boron (B) are used to obtain a nanocrystalline soft magnetic alloy that has a low coercive force and a high saturation magnetic flux density. The nanocrystalline soft magnetic alloy is applied to a wireless power transmitter and a wireless power receiver. Thereby, it is possible to make a shield member thin and increase a power transmission capacity. The soft magnetic alloy is easily processed into a flake form. The soft magnetic alloy processed in this way is applied to the shield member. Thereby, it is possible to increase permeability in a surface direction.
Abstract:
Disclosed are a display device and an optical member. The display device includes a light source, a wavelength conversion member provided adjacent to the light source, and a reflection-transmission part interposed between the light source and the wavelength conversion member.
Abstract:
Disclosed are an optical member and a display device including the same. The optical member includes a receiving member; a host in the receiving member; and a plurality of wavelength conversion particles distributed in the host. The receiving member includes a light incident part having a first refractive index; and a light exit part having a second refractive index different from the first refractive index. The optical member improves the optical characteristics by adjusting the refractive indexes of the light incident part and the light exit part.
Abstract:
Disclosed are an optical member and a display device including the same. The optical member includes a receiving member; a host in the receiving member; and a plurality of wavelength conversion particles distributed in the host. The receiving member includes a light incident part having a first refractive index; and a light exit part having a second refractive index different from the first refractive index. The optical member improves the optical characteristics by adjusting the refractive indexes of the light incident part and the light exit part.
Abstract:
Since the magnetic sheet of the present invention has a much thinner thickness compared to a corresponding conventional magnetic layer and radiator coil material assembly and has no adhesive layer or air layer between the magnetic layer and the radiator, permeability required at the time of charging can be improved, a loss rate can be reduced and high charging efficiency can be obtained. Furthermore, since a band width and a gain rate can be improved, the magnetic sheet can be very usefully applied to wireless charging products which pursue slimming in design.
Abstract:
A receiving antenna of a wireless power receiving device wirelessly charging electric power according to an embodiment of the present invention includes a substrate, a soft magnetic layer stacked on the substrate, and a receiving coil configured to receive electromagnetic energy emitted from a wireless power transmission device, wound in parallel with a plane of the soft magnetic layer, and formed inside of the soft magnetic layer, and an insulating layer is formed between the soft magnetic layer and the receiving coil.
Abstract:
A wireless power transmitting apparatus including a first transmitting coil; a second transmitting coil; a third transmitting coil on the first transmitting coil and the second transmitting coil; and a substrate to accommodate the first transmitting coil, the second transmitting coil, and the third transmitting coil, further the substrate includes a wall to surround a part of an outer circumference of the first transmitting coil and a part of an outer circumference of the second transmitting coil; a first protrusion to surround a first part of an outer circumference of the third transmitting coil; and a second protrusion to surround a second part of the outer circumference of the third transmitting coil.
Abstract:
Provided are an elastomer composition including epoxy resin, acrylate resin, an organic filler, an inorganic filler, a cross linking agent, a hardener, an initiator and a solvent, and a magnetic ferrite for a wireless power transmitting and receiving device, the magnetic ferrite being coated with the elastomater composition having an elastic restoring force not to be damaged by a physical impact applied from the outside.According to embodiments of the present invention, the magnetic ferrite having improved impact resistance can be provided by being coating with the elastomer composition having the elastic restoring force, and thus an existing problem such as a reduction in magnetic property caused by damage to the ferrite resulting from an external impact can be solved.
Abstract:
Provided is an electromagnetic booster for wireless charging, comprising a magnet part having a magnetic sheet (10) and a coil part (20) disposed on the magnetic sheet, wherein the magnetic sheet is composed of a first magnetic sheet (11) member located at an edge portion and a second magnetic sheet member (12) located in a center portion on the same plane, wherein the first magnetic sheet member and the second magnetic sheet member have different permeability rates from each other.