-
公开(公告)号:US20180120433A1
公开(公告)日:2018-05-03
申请号:US15859170
申请日:2017-12-29
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Austin K. Russell , Scott R. Campbell , Alain Villeneuve , Rodger W. Cleye , Joseph G. LaChapelle , Matthew D. Weed , Lane A. Martin
CPC classification number: G01S17/06 , G01S7/4804 , G01S7/4811 , G01S7/4814 , G01S7/4815 , G01S7/4816 , G01S7/4817 , G01S7/4818 , G01S7/483 , G01S7/484 , G01S7/4861 , G01S7/4863 , G01S7/4865 , G01S17/00 , G01S17/02 , G01S17/08 , G01S17/10 , G01S17/32 , G01S17/42 , G01S17/88 , G01S17/89 , G01S17/936 , H01S3/0007 , H01S3/0078 , H01S3/0085 , H01S3/06733 , H01S3/0675 , H01S3/06754 , H01S3/06758 , H01S3/08086 , H01S3/094003 , H01S3/094042 , H01S3/094076 , H01S3/0941 , H01S3/10023 , H01S3/1106 , H01S3/1608 , H01S3/2383 , H01S5/0057 , H01S5/0085 , H01S5/4012 , H01S5/4087 , H01S2301/02
Abstract: A lidar system with a pulsed laser diode to produce a plurality of optical seed pulses of light at one or more operating wavelengths between approximately 1400 nm and approximately 1600 nm. The lidar system may also include one or more optical amplifiers to amplify the optical seed pulses to produce a plurality of output optical pulses. Each optical amplifier may produce an amount of amplified spontaneous emission (ASE), and the output optical pulses may have characteristics comprising: a pulse repetition frequency of less than or equal to 100 MHz; a pulse duration of less than or equal to 20 nanoseconds; and a duty cycle of less than or equal to 1%. The lidar system may also include one or more optical filters to attenuate the ASE and a receiver to detect at least a portion of the output optical pulses scattered by a target located a distance.
-
公开(公告)号:US09869754B1
公开(公告)日:2018-01-16
申请号:US15466702
申请日:2017-03-22
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Scott R. Campbell , Rodger W. Cleye , Jason M. Eichenholz , Lane A. Martin , Matthew D. Weed
CPC classification number: G01S17/10 , G01S7/4817 , G01S17/42 , G01S17/87
Abstract: In one embodiment, a system includes a first lidar sensor, which includes a first scanner configured to scan first pulses of light along a first scan pattern and a first receiver configured to detect scattered light from the first pulses of light. The system also includes a second lidar sensor, which includes a second scanner configured to scan second pulses of light along a second scan pattern and a second receiver configured to detect scattered light from the second pulses of light. The first scan pattern and the second scan pattern are at least partially overlapped. The system further includes an enclosure, where the first lidar sensor and the second lidar sensor are contained within the enclosure. The enclosure includes a window configured to transmit the first pulses of light and the second pulses of light.
-
公开(公告)号:US09823353B2
公开(公告)日:2017-11-21
申请号:US15470735
申请日:2017-03-27
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Austin K. Russell , Scott R. Campbell , Alain Villeneuve , Rodger W. Cleye , Joseph G. LaChapelle , Matthew D. Weed , Lane A. Martin
CPC classification number: G01S17/06 , G01S7/4804 , G01S7/4811 , G01S7/4814 , G01S7/4815 , G01S7/4816 , G01S7/4817 , G01S7/4818 , G01S7/483 , G01S7/484 , G01S7/4861 , G01S7/4863 , G01S7/4865 , G01S17/00 , G01S17/02 , G01S17/08 , G01S17/10 , G01S17/32 , G01S17/42 , G01S17/88 , G01S17/89 , G01S17/936 , H01S3/0007 , H01S3/0078 , H01S3/0085 , H01S3/06733 , H01S3/0675 , H01S3/06754 , H01S3/06758 , H01S3/08086 , H01S3/094003 , H01S3/094042 , H01S3/094076 , H01S3/0941 , H01S3/10023 , H01S3/1106 , H01S3/1608 , H01S3/2383 , H01S5/0057 , H01S5/0085 , H01S5/4012 , H01S5/4087 , H01S2301/02
Abstract: A lidar system with a light source to emit a pulse of light into a field of view and a receiver to detect a return pulse of light which is reflected or scattered by a target in the field of view. The receiver may include an avalanche photodiode to generate an electrical-current pulse corresponding to the return pulse and a transimpedance amplifier to produce a voltage pulse that corresponds to the electrical-current pulse. A voltage amplifier may amplify the voltage pulse and a comparator may produce an edge signal when the amplified voltage pulse exceeds a threshold. A time-to-digital converter may determine a time interval based on an emission time of the pulse of light and based on the edge signal. A processor may determine a distance to the target using the time interval.
-
公开(公告)号:US09810786B1
公开(公告)日:2017-11-07
申请号:US15461380
申请日:2017-03-16
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: David Welford , Martin A. Jaspan , Jason M. Eichenholz , Scott R. Campbell , Lane A. Martin , Matthew D. Weed
CPC classification number: G01S17/10 , G01S7/4812 , G01S7/4814 , G01S7/4817 , G01S7/484 , G01S17/42 , G02F1/39 , H01S3/0092 , H01S3/0612 , H01S3/0621 , H01S3/0627 , H01S3/09415 , H01S3/1086 , H01S3/113 , H01S3/1611 , H01S3/1643 , H01S3/1673
Abstract: In one embodiment, a lidar system includes a pump laser configured to produce pulses of light at a pump wavelength. The lidar system further includes an optical parametric oscillator (OPO) with an OPO medium configured to: receive the pump pulses from the pump laser; convert at least part of the received pump pulses into pulses of light at a signal wavelength and pulses of light at an idler wavelength; and emit at least a portion of the signal pulses. The lidar system also includes a scanner configured to scan the emitted pulses of light across a field of regard and a receiver configured to detect at least a portion of the scanned pulses of light scattered by a target located a distance from the lidar system. The lidar system also includes a processor configured to determine the distance from the lidar system to the target.
-
公开(公告)号:US20170131388A1
公开(公告)日:2017-05-11
申请号:US15342728
申请日:2016-11-03
Applicant: Luminar Technologies, Inc.
Inventor: Scott R. Campbell , Jason M. Eichenholz , Lane A. Martin , Matthew D. Weed
CPC classification number: G01S7/4817 , G01S7/4812 , G01S7/4816 , G01S17/10 , G01S17/42 , G01S17/89
Abstract: A lidar system can include a light source that emits a pulse of light and a splitter that splits the pulse of light into two or more pulses of angularly separated light. The lidar system can also include a scanner configured to scan pulses of light along a scanning direction across a plurality of pixels located downrange from the lidar system. The lidar system can also include a detector array with a first detector and a second detector. The first and second detectors can be separated by a detector-separation distance along a direction corresponding to the scanning direction of the light pulses. The first detector can be configured to detect scattered light from the first pulse of light and the second detector can be configured to detect scattered light from the second pulse of light.
-
公开(公告)号:US11841440B2
公开(公告)日:2023-12-12
申请号:US17535174
申请日:2021-11-24
Applicant: Luminar Technologies, Inc.
Inventor: Istvan Peter Burbank , Matthew D. Weed , Jason Paul Wojack , Jason M. Eichenholz , Dmytro Trofymov
CPC classification number: G01S17/931 , B60W60/001 , G01S7/484 , G01S7/4814 , G01S7/4817 , G01S17/10 , G01S17/89 , B60W30/09 , B60W30/14 , B60W2420/52
Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan the emitted pulses of light along a high-resolution scan pattern located within a field of regard of the lidar system. The scanner includes one or more scan mirrors configured to (i) scan the emitted pulses of light along a first scan axis to produce multiple scan lines of the high-resolution scan pattern, where each scan line is associated with multiple pixels, each pixel corresponding to one of the emitted pulses of light and (ii) distribute the scan lines of the high-resolution scan pattern along a second scan axis. The high-resolution scan pattern includes one or more of: interlaced scan lines and interlaced pixels.
-
公开(公告)号:US20200284906A1
公开(公告)日:2020-09-10
申请号:US16879091
申请日:2020-05-20
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Scott R. Campbell , John E. McWhirter , Matthew D. Weed , Lane A. Martin
IPC: G01S17/08 , G01S7/481 , G02B26/10 , G02B26/12 , H01L27/146 , G01S17/42 , G01S17/931 , G02B5/09 , G02B7/182 , G01S17/89 , G02B27/09 , G02B27/10 , G02B27/30 , H01L25/16
Abstract: A lidar system includes one or more light sources configured to generate a first beam of light and a second beam of light, a scanner configured to scan the first and second beams of light across a field of regard of the lidar system, and a receiver configured to detect the first beam of light and the second beam of light scattered by one or more remote targets. The scanner includes a rotatable polygon mirror that includes multiple reflective surfaces angularly offset from one another along a periphery of the polygon mirror, the reflective surfaces configured to reflect the first and second beams of light to produce a series of scan lines as the polygon mirror rotates. The scanner also includes a pivotable scan mirror configured to (i) reflect the first and second beams of light and (ii) pivot to distribute the scan lines across the field of regard.
-
公开(公告)号:US20200256964A1
公开(公告)日:2020-08-13
申请号:US16861696
申请日:2020-04-29
Applicant: Luminar Technologies, Inc.
Inventor: Scott R. Campbell , Lane A. Martin , Matthew D. Weed , Jason M. Eichenholz
IPC: G01S7/4865 , G01S7/4861 , G01S17/10 , G01S7/486 , G01S17/42
Abstract: A lidar system includes a light source, a scanner, and a receiver and is configured to detect remote targets located up to RMAX meters away. The receiver includes a detector with a field of view larger than the light-source field of view. The scanner causes the detector field of view to move relative to the instantaneous light-source field of view along the scan direction, so that (i) when a pulse of light is emitted, the instantaneous light-source field of view is approximately centered within the detector field of view, and (ii) when a scattered pulse of light returns from a target located RMAX meters away, the instantaneous light-source field of view is located near an edge of the field of view of the detector and is contained within the field of view of the detector.
-
公开(公告)号:US20200217960A1
公开(公告)日:2020-07-09
申请号:US16817989
申请日:2020-03-13
Applicant: Luminar Technologies, Inc.
Inventor: Richmond Hicks , Matthew D. Weed , Jason M. Eichenholz
Abstract: A machine vision system comprises a camera configured to generate one or more images of a field of regard of the camera, a lidar system, and a processor. The lidar system includes a laser configured to emit light, where the emitted light is directed toward a region within the field of regard of the camera and a receiver configured to detect light returned from the emitted light. The processor is configured to receive an indication of a location based on the returned light and determine, based on the one or more images generated by the camera, whether the indication of the location is associated with a spurious return.
-
公开(公告)号:US10401481B2
公开(公告)日:2019-09-03
申请号:US15941677
申请日:2018-03-30
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Scott R. Campbell , Matthew D. Weed , Lane A. Martin , Jason M. Eichenholz
Abstract: A lidar system includes a light source configured to emit light, a scanner configured to scan a field of regard of the lidar system using (i) a first output beam that includes at least a portion of the emitted light and has a first amount of power and (ii) a second output beam that includes at least a portion of the emitted light and has a second amount of power different from the first amount of power, with an angular separation between the first output beam and the second output beam along a vertical dimension of the field of regard, and a receiver configured to detect light associated with the first output beam and light associated with the second output beam scattered by one or more remote targets.
-
-
-
-
-
-
-
-
-