Abstract:
A transfer stamp comprising a nano-film layer is formed on a substantially transparent polymeric substrate, wherein the substantially transparent polymeric substrate comprises an indirect adhesion layer adhered to the nano-film. The nano-film layer of the transfer stamp is applied to a surface of a target substrate; the nano-film layer is positioned between the indirect adhesion layer and the target substrate.
Abstract:
The present invention generally relates to devices comprising graphene and a conductive polymer (e.g., poly(3,4-ethylenedioxythiophene) (PEDOT)), and related systems and methods. In some embodiments, the conductive polymer is formed by oxidative chemical vapor deposition.
Abstract:
A metal dichalcogenide layer is produced on a transfer substrate by seeding F16CuPc molecules on a surface of a growth substrate, growing a layer (e.g., a monolayer) of a metal dichalcogenide via chemical vapor deposition on the growth substrate surface seeded with F16CuPc molecules, and contacting the F16CuPc-molecule and metal-dichalcogenide coated growth substrate with a composition that releases the metal dichalcogenide from the growth substrate.
Abstract:
Aromatic molecules are seeded on a surface of a growth substrate; and a layer (e.g., a monolayer) of a metal dichalcogenide is grown via chemical vapor deposition on the growth substrate surface seeded with aromatic molecules. The seeded aromatic molecules are contacted with a solvent that releases the metal dichalcogenide layer from the growth substrate. The metal dichalcogenide layer can be released with an adhered transfer medium and can be deposited on a target substrate.
Abstract:
The present invention generally relates to devices comprising graphene and a conductive polymer (e.g., poly(3,4-ethylenedioxythiophene) (PEDOT)), and related systems and methods. In some embodiments, the conductive polymer is formed by oxidative chemical vapor deposition.