Abstract:
An apparatus includes, an Integrated Circuit (IC), first electrical connections and second electrical connections. The IC is mounted on a substrate and is configured to exchange one or more communication signals with one or more electro-optical transducers, and to exchange one or more control signals with external circuitry. The first electrical connections extend from the IC on a plane parallel to the substrate, and are configured to conduct the communication signals. The second electrical connections extend from the IC on one or more planes not parallel to the substrate, and are configured to conduct the control signals.
Abstract:
A twin axial cable structure is provided for transmitting signals that makes use of insulative materials that are not easily extruded, such as expanded polyethylene (ePE) and expanded polytetrafluoroethylene (ePTFE). The cable structure includes an insulative body portion having a pair of open channels defined through an outer longitudinal surface of the insulative body portion, in which are disposed a pair of conductive wires. A conductive sheet is disposed on the insulative body portion, and a grounding element is placed in contact with the conductive sheet, such as by applying planar conductive sheets and grounding elements and/or ground wires to the insulative body portion. Corresponding methods and apparatuses for manufacturing the same are also provided. The cable structures, methods, and apparatuses described herein can produce a cable structure for transmitting multiple differential signals within the same structure, with minimal negative effects on other, neighboring transmissions.
Abstract:
An optical apparatus, comprising a Silicon Photonics (SiP) device, with multiple optical waveguides and an array of collimating lenses, configured to receive light from the multiple optical waveguides in paths not including optical fibers and to collimate the light of the multiple optical waveguides into collimated beams. A receptacle is configured to receive an external optical device in an orientation aligned with the collimated beams from the array of collimating lenses.
Abstract:
An apparatus includes one or more optoelectronic transducers, driving circuitry, one or more cooling elements, and a light coupling module. The optoelectronic transducers are configured to convert between optical signals conveyed over optical fibers and respective electrical signals. The driving circuitry is configured to process the electrical signals. The cooling elements are configured to remove heat that is produced at least by the driving circuitry. The light coupling module is configured to couple the optical signals between the optical fibers and the optoelectronic transducers, and additionally serves as a baseplate for the cooling elements.