Abstract:
Magnetic memory cells, methods of fabrication, semiconductor device structures, and memory systems are disclosed. A magnetic cell core includes at least one magnetic region (e.g., a free region or a fixed region) configured to exhibit a vertical magnetic orientation, at least one oxide-based region, which may be a tunnel junction region or an oxide capping region, and at least one magnetic interface region, which may comprise or consist of iron (Fe). In some embodiments, the magnetic interface region is spaced from at least one oxide-based region by a magnetic region. The presence of the magnetic interface region enhances the perpendicular magnetic anisotropy (PMA) strength of the magnetic cell core. In some embodiments, the PMA strength may be enhanced more than 50% compared to that of the same magnetic cell core structure lacking the magnetic interface region.
Abstract:
A magnetic cell structure comprises a seed material including tantalum, platinum, and ruthenium. The seed material comprises a platinum portion overlying a tantalum portion, and a ruthenium portion overlying the platinum portion. The magnetic cell structure comprises a magnetic region overlying the seed material, an insulating material overlying the magnetic region, and another magnetic region overlying the insulating material. Semiconductor devices including the magnetic cell structure, methods of forming the magnetic cell structure and the semiconductor devices are also disclosed.
Abstract:
Magnetic memory cells, methods of fabrication, semiconductor device structures, and memory systems are disclosed. A magnetic cell core includes at least one magnetic region (e.g., a free region or a fixed region) configured to exhibit a vertical magnetic orientation, at least one oxide-based region, which may be a tunnel junction region or an oxide capping region, and at least one magnetic interface region, which may comprise or consist of iron (Fe). In some embodiments, the magnetic interface region is spaced from at least one oxide-based region by a magnetic region. The presence of the magnetic interface region enhances the perpendicular magnetic anisotropy (PMA) strength of the magnetic cell core. In some embodiments, the PMA strength may be enhanced more than 50% compared to that of the same magnetic cell core structure lacking the magnetic interface region.
Abstract:
Magnetic memory cells, methods of fabrication, semiconductor device structures, and memory systems are disclosed. A magnetic cell core includes at least one magnetic region (e.g., a free region or a fixed region) configured to exhibit a vertical magnetic orientation, at least one oxide-based region, which may be a tunnel junction region or an oxide capping region, and at least one magnetic interface region, which may comprise or consist of iron (Fe). In some embodiments, the magnetic interface region is spaced from at least one oxide-based region by a magnetic region. The presence of the magnetic interface region enhances the perpendicular magnetic anisotropy (PMA) strength of the magnetic cell core. In some embodiments, the PMA strength may be enhanced more than 50% compared to that of the same magnetic cell core structure lacking the magnetic interface region.
Abstract:
A magnetic tunnel junction comprises a conductive first magnetic electrode comprising magnetic recording material, a conductive second magnetic electrode spaced from the first electrode and comprising magnetic reference material, and a non-magnetic tunnel insulator material between the first and second electrodes. The magnetic reference material of the second electrode comprises a synthetic antiferromagnetic construction comprising two spaced magnetic regions one of which is closer to the tunnel insulator material than is the other. The one magnetic region comprises a polarizer region comprising CoxFeyBz where “x” is from 0 to 90, “y” is from 10 to 90, and “z” is from 10 to 50. The CoxFeyBz is directly against the tunnel insulator. A non-magnetic region comprising an Os-containing material is between the two spaced magnetic regions. The other magnetic region comprises a magnetic Co-containing material. Other embodiments are disclosed.
Abstract:
Some embodiments include a magnetic tunnel junction comprising magnetic reference material having an iridium-containing region between a multi-layer stack and a polarizer region. Some embodiments include a magnetic tunnel junction having a conductive first magnetic electrode which contains magnetic recording material, a conductive second magnetic electrode spaced from the first electrode and which contains magnetic reference material, and a non-magnetic insulator material between the first and second electrodes. The magnetic reference material of the second electrode includes a first region containing a stack of cobalt alternating with one or more of platinum, palladium and nickel; includes an iridium-containing second region over the first region; and includes a cobalt-containing third region over the second region. The third region is directly against the non-magnetic insulator material.
Abstract:
Some embodiments include a magnetic tunnel junction comprising magnetic reference material having an iridium-containing region between a multi-layer stack and a polarizer region. Some embodiments include a magnetic tunnel junction having a conductive first magnetic electrode which contains magnetic recording material, a conductive second magnetic electrode spaced from the first electrode and which contains magnetic reference material, and a non-magnetic insulator material between the first and second electrodes. The magnetic reference material of the second electrode includes a first region containing a stack of cobalt alternating with one or more of platinum, palladium and nickel; includes an iridium-containing second region over the first region; and includes a cobalt-containing third region over the second region. The third region is directly against the non-magnetic insulator material.
Abstract:
Spin torque transfer memory cells and methods of forming the same are described herein. As an example, spin torque transfer memory cells may include a self-aligning polarizer, a pinned polarizer, and a storage material formed between the self-aligning polarizer and the pinned polarizer.