Abstract:
A circuit assembly (1800) includes a first circuit substrate (1200) defining a first major face (1201) and a second circuit substrate (1500) defining a second major face (1502). A plurality of electrical components (1203,1204,1205) can be disposed on one or more of the first major face or the second major face. One or more substrate bridging members (1301,1302,1303,1304) are disposed between the first circuit substrate and the second circuit substrate. Each substrate bridging member can define a unitary structure having a first end bonded to the first major face and a second end bonded to the second major face to bridge the first circuit substrate and the second circuit substrate.
Abstract:
A device includes a thermal infrared sensor and a processor, operatively coupled to the thermal IR sensor. The processor is configured to determine that the device has been successfully unlocked by a user using a security procedure, obtain a thermal signature for the user using thermal sensor data from the thermal infrared sensor, monitor proximity of the user to the device using the thermal signature and maintain the device unlocked if the thermal signature is detectable and is within the detection proximity of the thermal infrared sensor.
Abstract:
An electronic device includes a housing and one or more processors. At least one proximity sensor component is operable with the one or more processors and includes an infrared signal receiver to receive an infrared emission from an object external to the housing. At least one proximity detector component is also operable with the one or more processors and includes a signal emitter and corresponding signal receiver. The one or more processors can actuate the at least one proximity detector component when the at least one proximity sensor component receives the infrared emission from the object.
Abstract:
A method in an electronic device, the method includes projecting infrared (“IR”) light from a plurality of light emitting diodes (“LEDs”) disposed proximate to the perimeter of the electronic device, detecting, by a sensor, IR light originating from at least two of the plurality of LEDs reflected from off of a person, and carrying out a function based on the relative strength of the detected IR light from the LEDs.
Abstract:
A method in an electronic device, the method includes projecting infrared (“IR”) light from a plurality of light emitting diodes (“LEDs”) disposed proximate to the perimeter of the electronic device, detecting, by a sensor, IR light originating from at least two of the plurality of LEDs reflected from off of a person, and carrying out a function based on the relative strength of the detected IR light from the LEDs.
Abstract:
An electronic device for detecting presence includes a housing and an infrared (“IR”) sensor. The housing includes an outer surface having an opening formed thereon. The IR sensor is disposed in the housing and adjacent to the opening. The IR sensor has an unobstructed path and line of sight through the opening to outside of the housing. The IR sensor is configured to receive heat emitted by a person from outside of the housing via the opening and to generate a signal in response thereto.
Abstract:
To authenticate a user, fingerprint data for multiple fingers of the user fingers is sensed by a fingerprint sensor (504). Each of these multiple fingers is situated adjacent to at least one other of these multiple fingers while the fingerprint data is being sensed by the fingerprint sensor. Various characteristics of the user's fingers can be analyzed (506) as part of the user authentication, such as the length of the user's fingers relative to one another, the width of the user's fingers relative to one another, the locations of minutiae of one of the user's fingerprints relative to the locations of minutiae of other of the user's fingerprints, and so forth.