摘要:
An intake pressure is successively detected by a pressure sensor, and an intake pressure derivative is calculated. Next, a peak pressure detecting range for each cylinder is set based on the intake pressure derivative. Next, an upward peak pressure and a downward peak pressure of the intake pressure, included in the peak pressure detecting range, are detected for each cylinder. Next, an intake pressure drop for each cylinder is calculated from the upward peak pressure and the downward peak pressure. The in-cylinder charged air amount is calculated based on the intake pressure drop.
摘要:
An engine body includes a plurality of cylinders, and the intake valve lift-amount of each cylinder is changed based on the engine operating state. A pressure sensor continuously detects the intake pressure, which is the pressure in an intake pipe, to detect the intake pressure decrease amount, which is the amount of decrease in the intake pressure caused due to execution of the intake stroke, of each cylinder. The air quantity variation correction coefficient, which is used to compensate for the variation in the in-cylinder supplied-air quality with each cylinder, is calculated based on the detected intake pressure decrease amount, and the fuel injection amount is corrected using the air quantity variation correction coefficient.
摘要:
Provided is an apparatus for detecting cylinder air-fuel ratio imbalance abnormality. The apparatus is provided with an abnormality detecting unit that detects a cylinder air-fuel ratio imbalance abnormality by comparing a value of a parameter correlated with a degree of fluctuation in the air-fuel ratio sensor output to an abnormality threshold value, and a correcting unit that corrects at least one of the value of the parameter or the abnormality threshold value on the basis of atmospheric pressure. An amount of correction performed by the correcting unit is modified according to engine load.
摘要:
An abnormality detection apparatus for a multi-cylinder internal combustion engine changes a fuel injection quantity of a predetermined target cylinder to detect an abnormality of an internal combustion engine based on values of rotational variations relating to the target cylinder detected before and after the change of the fuel injection quantity. The abnormality detection apparatus corrects the values of the rotational variations relating to the target cylinder detected before and after the change of the fuel injection quantity based on at least one of the number of revolutions of the engine and an engine load at a corresponding detection time.
摘要:
An apparatus for detecting imbalance abnormality in an air-fuel ratio between cylinders in a multi-cylinder internal combustion engine according to the present invention increases a fuel injection quantity to a predetermined target cylinder to detect imbalance abnormality in an air-fuel ratio between cylinders at least based upon a rotation variation of the target cylinder after increasing the fuel injection quantity. The increase in the fuel injection quantity is carried out in the middle of performing the post-fuel-cut rich control. Since timing of the post-fuel cut rich control is used to increase the fuel injection quantity, the exhaust emission deterioration due to abnormality detection execution can be prevented as much as possible.
摘要:
An engine ECU calculates a rotational variation based on a required rotation time when a complete misfire occurs in a cylinder, a required rotation time when complete combustion occurs in the cylinder, and a required rotation time during the current combustion stroke, and integrates the calculated rotational variation. If it is determined that the number of times the rotational variation has been integrated has reached a predetermined number, the engine ECU calculates an amount of learning value deviation from the integrated rotational variation. If the amount of learning value deviation is equal to or greater than a certain amount, the engine ECU corrects a learning value of a sub-feedback control with respect to the air-fuel ratio.
摘要:
An apparatus and method for controlling the intake air amount in an internal combustion engine provided with a throttle valve and an intake air amount changing means linked with the same, the intake air amount control apparatus and method of an internal combustion engine finding a target intake air amount mcta based on an accelerator opening degree and engine speed (step 101), determining a target setting Cvta for said intake air amount changing means based on at least said target intake air amount (step 103), and finding a target throttle opening degree θtta based on model equations creating a model of an engine intake system and expressing the air passing through the engine intake system from said target intake air amount mcta and the target setting Cvta (step 107).
摘要:
A cylinder air filling amount is divided into a first amount of air and a second amount of air, the first amount of air and the second amount of air are calculated, and the first amount of air and the second amount of air are totaled to calculate a cylinder air filling amount. The first amount of air is the excess of the cylinder air filling amount with respect to the throttle valve air passage amount occurring due to an intake stroke being performed. The drop in intake pressure occurring due to an intake stroke being performed is detected for each cylinder and the total value of the intake pressure drop in a 720° crank angle range is calculated. The first amount of air is calculated based on an intake pressure drop and the intake pressure drop total value. Due to this, it is possible to simply and accurately calculate a cylinder air filling amount.
摘要:
An apparatus and method for controlling the intake air amount in an internal combustion engine provided with a throttle valve and an intake air amount changing means linked with the same, the intake air amount control apparatus and method of an internal combustion engine finding a target intake air amount mcta based on an accelerator opening degree and engine speed (step 101), determining a target setting Cvta for said intake air amount changing means based on at least said target intake air amount (step 103), and finding a target throttle opening degree θtta based on model equations creating a model of an engine intake system and expressing the air passing through the engine intake system from said target intake air amount mcta and the target setting Cvta (step 107).