Abstract:
Techniques for facilitating authorized telemetry with an implantable device are provided. In one embodiment, for example, a method includes comparing, by a first device having a processor, first electronic information with second electronic information. The first electronic information is indicative of a first motion of a second device external to a body in which the implantable device is located, and the second electronic information is indicative of a second motion of the implantable device. The method also includes determining whether a defined level of correlation exists between the first electronic information and the second electronic information, and initiating a telemetry session between the second device and the implantable device based on a determination that the defined level of correlation exists between the first electronic information and the second electronic information.
Abstract:
An implantable medical device (IMD) antenna and methods of fabricating the same are provided. An IMD can include a ceramic structure having at least one wall defining a hollow cavity. The ceramic structure can include a first end and a second end distal from the first end, the first and second ends being open to provide access to the hollow cavity. The IMD also includes an antenna cofire-integrated into the at least one wall of the ceramic structure and a housing adjoined to the ceramic structure.
Abstract:
An implantable medical device is provided having circuitry to control operation of the implantable medical device and a receiver configured to receive communication signals on an allocated band of a plurality of communication channels separated in frequency by a channel spacing. The receiver includes an oscillator and a signal source configured to apply a quench signal to the oscillator. The quench signal has a frequency corresponding to the channel spacing. The receiver is enabled to receive on all of the plurality of communication channels simultaneously by applying the quench signal.
Abstract:
Systems, apparatus, methods and computer-readable storage media facilitating management of operation of an implantable medical device (“IMD”) using a number of communication modes are provided. An IMD is configured to operate in a disabled mode wherein radio frequency (RF) telemetry communication is disabled, or operate in a first advertising mode using the RF telemetry communication. The IMD receives a clinician session request from a clinician device via an induction telemetry protocol while operating in the disabled mode or the first advertising mode, and transitions to operating from the disabled mode or the first advertising mode to operating in a second advertising mode based on receiving the clinician session request. From the second advertising mode, the IMD can establish a clinician telemetry session with the clinician device using the RF telemetry communication and a unique security mechanism facilitated by an identifier for the clinician device included in the clinician session request.
Abstract:
Techniques for facilitating telemetry between a medical device and an external device are provided. In one example, a medical device includes a classification component and a communication component. The classification component is configured to determine a classification for data generated by the medical device. The classification component is also configured to determine an urgency level for an advertising data packet based on the classification for the data. The communication component is also configured to broadcast the advertising data packet for the medical device at a defined beaconing rate based on the urgency level for the advertising data packet.
Abstract:
Techniques for mitigating transmission of stale data from an implantable device are provided. In one embodiment, a method includes monitoring one or more data items stored in a data management queue prior to submission to a packet transmission queue for transmission as packets on a communication network to one or more other devices. The method also includes discarding a data item from the data management queue based on a determination that the data item has an expected arrival time to an other device that is after a latest acceptable arrival time associated with the data item. The method also includes estimating a size of the packet transmission queue, and transmitting another data item from the data management queue to the packet transmission queue based on a determination that the size of the packet transmission queue has a defined relationship to the threshold size.
Abstract:
Techniques for facilitating authorized telemetry with an implantable device are provided. In one embodiment, for example, a method includes comparing, by a first device having a processor, first electronic information with second electronic information. The first electronic information is indicative of a first motion of a second device external to a body in which the implantable device is located, and the second electronic information is indicative of a second motion of the implantable device. The method also includes determining whether a defined level of correlation exists between the first electronic information and the second electronic information, and initiating a telemetry session between the second device and the implantable device based on a determination that the defined level of correlation exists between the first electronic information and the second electronic information.
Abstract:
Systems, apparatus, methods and non-transitory computer readable media facilitating telemetry data communication security between an implantable device and an external clinician device are provided. An implantable device can include a security component configured to generate security information based on reception of a clinician telemetry session request from the clinician device via a first telemetry communication protocol. The security information can include a session identifier and a first session key, and the clinician telemetry session request can include a clinician device identifier associated with the clinician device. The implantable device can further include a communication component configured to establish a clinician telemetry session with the clinician device using a second telemetry communication protocol based on determining that a connection request, received via the second telemetry communication protocol, was transmitted by the clinician device based on inclusion of the clinician device in the connection request.
Abstract:
Systems, apparatus, methods and computer-readable storage media facilitating management of operation of an implantable medical device (“IMD”) using a number of communication modes are provided. An IMD is configured to operate in a disabled mode wherein radio frequency (RF) telemetry communication is disabled, or operate in a first advertising mode using the RF telemetry communication. The IMD receives a clinician session request from a clinician device via an induction telemetry protocol while operating in the disabled mode or the first advertising mode, and transitions to operating from the disabled mode or the first advertising mode to operating in a second advertising mode based on receiving the clinician session request. From the second advertising mode, the IMD can establish a clinician telemetry session with the clinician device using the RF telemetry communication and a unique security mechanism facilitated by an identifier for the clinician device included in the clinician session request.
Abstract:
An implantable medical device (IMD) antenna and methods of fabricating the same are provided. An IMD can include a ceramic structure having at least one wall defining a hollow cavity. The ceramic structure can include a first end and a second end distal from the first end, the first and second ends being open to provide access to the hollow cavity. The IMD also includes an antenna cofire-integrated into the at least one wall of the ceramic structure and a housing adjoined to the ceramic structure.