摘要:
Data is stored in a quantum-well type structure with double gate control. According to an example embodiment, a transistor-based data storage circuit includes a gate, a back gate and a semiconductor channel between the gate and the back gate. Carriers are stored in a storage pocket structure in the channel, in response to biases applied to the gate and back gate. Current passing through the channel is sensed and used to detect the stored carriers and, correspondingly, a memory state of the storage circuit.
摘要:
Optical devices having integrated waveguide and active areas are realized using a crystallization approach involving the inhibition of defects typically associated with liquid-phase crystalline growth of lattice mismatched materials. According to one example embodiment, a growth region is formed such that the region is isolated from a silicon portion of silicon material. The region extends from a silicon-based seeding area of the substrate. A semiconductor material is deposited on a Silicon-based seeding area and in the growth region. A single crystalline material is formed from the deposited semiconductor material by heating and cooling the deposited semiconductor material while directing growth of the semiconductor material from the Silicon-based seeding area and through an opening sufficiently narrow to mitigate crystalline defects. A light-communicating device is formed by etching the silicon material over an insulator layer and etching the single crystalline material.
摘要:
Data is stored in a quantum-well type structure with double gate control. According to an example embodiment, a transistor-based data storage circuit includes a gate, a back gate and a semiconductor channel between the gate and the back gate. Carriers are stored in a storage pocket structure in the channel, in response to biases applied to the gate and back gate. Current passing through the channel is sensed and used to detect the stored carriers and, correspondingly, a memory state of the storage circuit.
摘要:
Various methods and devices are implemented using efficient silicon compatible integrated light communicators. According to one embodiment of the present invention, a semiconductor device is implemented for communicating light, such as by detecting, modulating or emitting light. The device has a silicon-seeding location, an insulator layer and a second layer on the insulator layer. The second layer includes a silicon-on-insulator region and an active region surrounded by the silicon-on-insulator region and connected to the silicon-seeding location. The active region includes a single-crystalline germanium-based material that extends from the silicon-seeding location through a passageway with a cross-sectional area that is sufficiently small to mitigate crystalline growth defects. The single-crystalline germanium-based material is physically coupled to the insulating layer such that the insulating layer introduces a high tensile strain to the germanium-based material, and a more specific aspect is directed to an SOI implementation.
摘要:
A structure and method operable to create a reusable template for detachable thin semiconductor substrates is provided. The template has a shape such that the 3-D shape is substantially retained after each substrate release. Prior art reusable templates may have a tendency to change shape after each subsequent reuse; the present disclosure aims to address this and other deficiencies from the prior art, therefore increasing the reuse life of the template.
摘要:
Various methods and devices are implemented using efficient silicon compatible integrated light communicators. According to one embodiment of the present invention, a semiconductor device is implemented for communicating light, such as by detecting, modulating or emitting light. The device has a silicon-seeding location, an insulator layer and a second layer on the insulator layer. The second layer includes a silicon-on-insulator region and an active region surrounded by the silicon-on-insulator region and connected to the silicon-seeding location. The active region includes a single-crystalline germanium-based material that extends from the silicon-seeding location through a passageway with a cross-sectional area that is sufficiently small to mitigate crystalline growth defects. The single-crystalline germanium-based material is physically coupled to the insulating layer such that the insulating layer introduces a high tensile strain to the germanium-based material, and a more specific aspect is directed to an SOI implementation.
摘要:
A structure and method operable to create a reusable template for detachable thin semiconductor substrates is provided. The template has a shape such that the 3-D shape is substantially retained after each substrate release. Prior art reusable templates may have a tendency to change shape after each subsequent reuse; the present disclosure aims to address this and other deficiencies from the prior art, therefore increasing the reuse life of the template.