摘要:
Brightness expression without solid white pattern is enabled, and video expression with an improved black level is achieved. A distortion module (5) reduces the luminance of a backlight source according to the histogram of the video signal so that the contrast may be a predetermined target one. A configuration design unit (13) sets the gain according to the luminance level (BLreduced) of the backlight source selected by the distortion module (5). When setting the gain, the luminance level (BLref) for reference of the backlight source preset according to the video feature value is referenced. If the video feature value meets a predetermined condition, the input video signal is always amplified with the gain. If not, depending on the relation between the BLreduced and the BLref, the input video signal is amplified or not.
摘要:
The present invention provides a display device capable of realizing an appropriate screen display luminance in accordance with a video feature quantity and brightness around and sufficiently reducing power consumption. A liquid crystal display apparatus (1) includes: a liquid crystal panel (20) for displaying a video by an input video signal; a backlight unit (17) as a light source for irradiating the liquid crystal panel (20); and a brightness sensor (24) for detecting the brightness around the liquid crystal display apparatus (1). According to the brightness detected by the brightness sensor (24), luminance conversion characteristic defining the light emission luminance of the backlight for the feature quantity (such as APL) of the input video signal is changed. Here, the luminance conversion characteristic is changed so that the light emission luminance is reduced as the brightness around the liquid crystal display apparatus becomes darker and the position of the characteristic modification point as the point where the slope of the luminance conversion characteristic is changed is shifted in the direction of the feature quantity change. According to the obtained luminance conversion characteristic, the light emission luminance of the backlight is controlled.
摘要:
Disclosed is a display device in which high resolution representation is made by generating and displaying display data for each sub-pixel, and in which reduction in image quality is improved. The display device is provided with a display panel in which one pixel is constructed from sub-pixels of at least 4 colors. The display device generates the display data for each sub-pixel in accordance with an input image signal, and displays the display data on the display panel. Within the sub-pixels, high brightness sub-pixels which are the two sub-pixels having the highest brightness are arranged alternately with the other sub-pixels. Also, the area of each high brightness sub-pixel is smaller than that of the other sub-pixels. In a preferred example, the areas of the two sub-pixels having the highest brightness and the areas of the other two sub-pixels have area ratios in the following order: 1.0:1.0:1.6:1.6.
摘要:
A light emission device capable of holding a uniform color in various environments. A light source control device has a light detection device for detecting emission brightness of light sources that emit different colors and controlling emission brightness of at least one light source of the light sources based on the detection result of the light detection device. A through-hole is formed in a reflection member for reflecting light emitted from the light source, and the reflection is in a predetermined direction. The light detection device is provided across the reflection member from the light source, and the light propagation member is provided at the through-hole.
摘要:
Areas of a video signal that represent light emission are detected, the luminance levels at which said light emission areas are displayed are enhanced, emphasizing said areas, and said luminance stretching is controlled in accordance with the brightness of the surrounding environment, thereby increasing the resulting sense of brightness and improving the appearance of the video. A light emission detecting portion (12) counts pixels in order to generate a histogram of a prescribed feature quantity of an input video signal and identifies areas that fall within a prescribed range at the upper end of said histogram as being light emission areas. On the basis of a brightness-related index computed from the input video signal on the basis of prescribed conditions, an area-active-control/luminance-stretching portion (14) performs luminance stretching, increasing the luminance of a backlight portion (16) and reducing the luminance of non-light emission areas of the video signal, i.e. the areas other than the light emitting areas. When doing so, the area-active-control/luminance-stretching portion (14) switches between control curves, which define the relationship between the brightness-related index and the amount of stretching, in accordance with the brightness of the surroundings of the device as detected by a brightness detection portion (19).
摘要:
Areas of a video signal that represent light emission are detected, the luminance levels at which said light emission areas are displayed are enhanced, emphasizing said areas, and said luminance stretching is controlled in accordance with a set image quality mode, thereby producing consistently natural, high-quality visual imagery. A light emission detecting portion (12) counts pixels in order to generate a histogram of a prescribed feature quantity of an input video signal and identifies areas that fall within a prescribed range at the upper end of said histogram as being light emission areas. On the basis of a brightness-related index computed from the input video signal on the basis of prescribed conditions, an area-active-control/luminance-stretching portion (14) performs luminance stretching, increasing the luminance of a backlight portion (16) and reducing the luminance of non-light emission areas of the video signal, i.e. the areas other than the light emitting areas. When doing so, the area-active-control/luminance-stretching portion (14) switches between control curves, which define the relationship between the brightness-related index and the amount of stretching, in accordance with an image quality mode set by an image quality mode setting portion (19).
摘要:
The purpose of the present invention is to increase a feeling of brightness and express a video with high contrast by detecting a part of a video signal that emits light, enhancing the display luminance of the light-emitting part, and displaying said part. A light emission detection portion (1) uses a prescribed feature quantity related to the brightness of an input video signal, predetermines the light emission quantity for the video signal on the basis of the relationship with the feature quantity, and detects the light emission quantity for each input video signal frame from the feature quantity. A backlight luminance stretch portion (3) stretches the light source luminance of the backlight according to the light emission quantity detected. A video signal luminance stretch portion (6) stretches the video signal according to the light emission quantity or the luminance distribution of the input video signal. A mapping portion (7) carries out mapping of the video signal by reducing the luminance of the parts without light emission. Therefore, the part of the input video signal that can be seen as emitting light is enhanced by luminance stretching of the backlight and stretching of the video signal.
摘要:
When a wide color gamut display displays video based on a video signal that complies with a narrower color reproduction range standard, in order to make full use of the feature of the wide color gamut display capable of displaying highly saturated and vivid reds, while eliminating the problem of seeing glaring images in the part of the red color region near the highest brightness and saturation, a video processing circuit (2) reduces and corrects the signal value of the input video signal, which represents the colors within the color range to be corrected, which is within a specified saturation range from the highest saturation to the middle saturation inside a specified hue range centered on the red hue in the color reproduction range (an expanded color reproduction range wider than the sRGB standard color reproduction range) of a liquid crystal panel (4), and which is within a specified brightness range from the highest brightness to the middle brightness inside that range, so that the saturation and brightness thereof change to saturation and brightness within a predetermined middle color range between the expanded color reproduction range and the color reproduction range of the standard to which the input video signal complies.
摘要:
A liquid crystal display has an LCD controller, a microcomputer, and a storage section. The LCD controller is capable of setting up an image display period for performing display based on input image data and a black display period for performing display based on black display data, within one field period. The microcomputer switches the mode of the LCD controller between an impulse-drive mode having the image display period and the black display period within the one field period, and a hold drive mode having only the image display period. The storage section stores sets of reference gradation voltage data that are previously specified. A reference gradation voltage, which is generated at a reference gradation voltage generation section and used for driving the liquid crystal display panel, is variable according to the mode. Thus, it is possible to realize the liquid crystal display that can suppress changes in gamma characteristics so as to prevent deterioration of display quality even when the mode is switched.
摘要:
Brightness expression without solid white pattern is enabled, and video expression with an improved black level is achieved. A distortion module (5) reduces the luminance of a backlight source according to the histogram of the video signal so that the contrast may be a predetermined target one. A configuration design unit (13) sets the gain according to the luminance level (BLreduced) of the backlight source selected by the distortion module (5). When setting the gain, the luminance level (BLref) for reference of the backlight source preset according to the video feature value is referenced. If the video feature value meets a predetermined condition, the input video signal is always amplified with the gain. If not, depending on the relation between the BLreduced and the BLref, the input video signal is amplified or not.