摘要:
Methods and apparatus for seamless SMM (System Management Mode) global driver update base on SMM Root-of-Trust. Mechanisms are provided to load and replace SMM drivers at runtime in a secure manner, without requiring an SMM firmware update and platform reset. SMM code is executed by BIOS during boot in a hidden area of memory called SMRAM space. Seamless update using an SMM Global Driver Update provides a method to load and replace all SMM drivers (including SMM infrastructure) on an already shipped platform production for purposes such as bug fixes. The principles and teachings may also be applied to update other types of secure execution mode code in addition to SMM code.
摘要:
Embodiments of apparatus, computer-implemented methods, systems, devices, and computer-readable media are described herein for a computing device with a platform entity such as an interrupt handier configured to notify an operating system or virtual machine monitor executing on the computing device of an input/output error-containment event. In various embodiments, the interrupt handler may be configured to facilitate recovery of a link to an input/output device that caused the input/output error-containment event, responsive to a directive from the operating system or virtual machine monitor.
摘要:
Technologies for system management interrupt (“SMI”) handling include a number of processor cores configured to enter a system management mode (“SMM”) in response to detecting an SMI. The first processor core to enter SMM and acquire a master thread lock sets an in-progress flag and executes a master SMI handler without waiting for other processor cores to enter SMM. Other processor cores execute a subordinate SMI handler. The master SMI handler may direct the subordinate SMI handlers to handle core-specific SMIs. The multi-core processor may set an SMI service pending flag in response to detecting the SMI, which is cleared by the processor core that acquires the master thread lock. A processor core entering SMM may immediately resume normal execution upon determining the in-progress flag is not set and the service pending flag is not set, to detect and mitigate spurious SMIs. Other embodiments are described and claimed.
摘要:
Technologies to generate an error record are described herein. A method includes performing a scan of one or more error logs to identify a source of data in response to an attempt to access the data, determining whether an amount of time to complete the scan will exceed a threshold value, and generating a notice that the error record will be deferred based on the determination. A system includes a data collector to scan one or more error logs to identify a source of data in response to an attempt to access the data, a controller to determine whether an amount of time to scan the error logs to identify the source of data will exceed a threshold value, and a signal generator to generate a signal indicating that the error record is to be deferred based on the determination.
摘要:
Memory reconfiguration during system run-time is described. In one example, a system includes a memory slot to carry a memory board and to connect the memory board to a memory controller for read and write operations, a logic device having a plurality of status registers to record the status of the memory slot and a plurality of control registers to control the operation of the memory slot, and a bus interface coupled through direct signal lines to the memory slot to communicate status and control signals with the memory slot and coupled through a serial bus to the logic device to communicate status and control signals with the logic device.
摘要:
In some embodiments a request is received to perform an error injection or a memory migration, a mode is entered that blocks requests from agents other than a current processor core or thread, the error is injected or the memory is migrated, and the mode that blocks requests from the agents other than the current processor core or thread is exited. Other embodiments are described and claimed.
摘要:
Examples may include communicating with a controller for a non-volatile dual in-line memory module through a system management bus (SMBus) interface. In some examples, selective assertion of bits maintained in registers accessible through the SMBus interface may enable communication with the controller. The selective assertion may be based on a register map.
摘要:
In one embodiment, the present invention provides an ability to handle an error occurring during a memory migration operation in a high availability system. In addition, a method can be used to dynamically remap a memory page stored in a non-mirrored memory region of memory to a mirrored memory region. This dynamic remapping may be responsive to a determination that the memory page has been accessed more than a threshold number of times, indicating a criticality of information on the page. Other embodiments are described and claimed.
摘要:
In one embodiment, the present invention provides an ability to handle an error occurring during a memory migration operation in a high availability system. In addition, a method can be used to dynamically remap a memory page stored in a non-mirrored memory region of memory to a mirrored memory region. This dynamic remapping may be responsive to a determination that the memory page has been accessed more than a threshold number of times, indicating a criticality of information on the page. Other embodiments are described and claimed.
摘要:
In some embodiments a signal is sent from a Basic Input/Output System to a device to indicate that the Basic Input/Output System needs to obtain control of shared resources. A signal is sent from the device to the Basic Input/Output System that indicates that the Basic Input/Output System can now control the shared resources. Other embodiments are described and claimed.