Abstract:
In one embodiment, a processor includes a plurality of cores including a first core to be reserved for execution in a protected domain, the first core to be hidden from an operating system. The processor may further include a filter coupled to the plurality of cores, where the filter includes a plurality of fields each associated with one of the plurality of cores to indicate whether an interrupt of the protected domain is to be directed to the corresponding core. Other embodiments are described and claimed.
Abstract:
In some embodiments, a PPM interface may be provided with functionality to facilitate to an OS RAS services for one or more hardware components, regardless of a particular platform hardware configuration, as long as the platform hardware and OS are in conformance with the PPM interface.
Abstract:
A firmware assisted error handling scheme in a computer system has been disclosed. In one embodiment, firmware is used to access one or more hardware-specific error registers within the computer system in response to a system management interrupt (SMI) trap. Using the firmware, an error record in a common error record format is constructed. The error record is made available to an operating system (OS) within the computer system.
Abstract:
Apparatus, systems, and methods to manage memory operations are described. In one example, a controller comprises logic to receive a first transaction to operate on a first data element in a volatile memory, determine whether the first data element is to be stored in a nonvolatile memory, and in response to a determination that the first data element is to be stored in a nonvolatile memory, to forward the first transaction to the memory controller coupled to the nonvolatile memory. Other examples are also disclosed and claimed.
Abstract:
Technologies for system management interrupt (“SMI”) handling include a number of processor cores configured to enter a system management mode (“SMM”) in response to detecting an SMI. The first processor core to enter SMM and acquire a master thread lock sets an in-progress flag and executes a master SMI handler without waiting for other processor cores to enter SMM. Other processor cores execute a subordinate SMI handler. The master SMI handler may direct the subordinate SMI handlers to handle core-specific SMIs. The multi-core processor may set an SMI service pending flag in response to detecting the SMI, which is cleared by the processor core that acquires the master thread lock. A processor core entering SMM may immediately resume normal execution upon determining the in-progress flag is not set and the service pending flag is not set, to detect and mitigate spurious SMIs. Other embodiments are described and claimed.
Abstract:
Embodiments of apparatus, computer-implemented methods, systems, devices, and computer-readable media are described herein for a computing device with a platform entity such as an interrupt handier configured to notify an operating system or virtual machine monitor executing on the computing device of an input/output error-containment event. In various embodiments, the interrupt handler may be configured to facilitate recovery of a link to an input/output device that caused the input/output error-containment event, responsive to a directive from the operating system or virtual machine monitor.
Abstract:
A firmware assisted error handling scheme in a computer system has been disclosed. In one embodiment, firmware is used to access one or more hardware-specific error registers within the computer system in response to a system management interrupt (SMI) trap. Using the firmware, an error record in a common error record format is constructed. The error record is made available to an operating system (OS) within the computer system.
Abstract:
In some embodiments, a PPM interface may be provided with functionality to facilitate to an OS memory power state management for one or more memory nodes, regardless of a particular platform hardware configuration, as long as the platform hardware is in conformance with the PPM interface.
Abstract:
Memory reconfiguration during system run-time is described. In one example, a system includes a memory slot to carry a memory board and to connect the memory board to a memory controller for read and write operations, a logic device having a plurality of status registers to record the status of the memory slot and a plurality of control registers to control the operation of the memory slot, and a bus interface coupled through direct signal lines to the memory slot to communicate status and control signals with the memory slot and coupled through a serial bus to the logic device to communicate status and control signals with the logic device.
Abstract:
A microcode (uCode) hot-upgrade method for bare metal cloud deployment and associated apparatus. Under the uCode hot-upgrade method, a uCode path is received at an out-of-band controller (e.g., baseboard management controller (BMC)) and buffered in a memory buffer in the out-of-band controller. The out-of-band controller exposes the memory buffer as a Memory-Mapped Input-Output (MMIO) range to a host CPU. A uCode upgrade interrupt service is triggered to upgrade uCode for one or more CPUs in a bare-metal cloud platform during runtime of a tenant host operating system (OS) using an out-of-bound process. This innovation enables cloud service providers to deploy uCode hot-patches to bare metal servers for live-patch without touching the tenant operating system environment.