Abstract:
A radio-frequency module includes a mounting substrate having a first main surface; a first power amplifier that is mounted on the first main surface and that amplifies a first transmission signal in a first frequency band; a second power amplifier that is mounted on the first main surface and that amplifies a second transmission signal in a second frequency band different from the first frequency band; a first output matching circuit that is mounted on the first main surface and that receives the first transmission signal amplified by the first power amplifier; and a second output matching circuit that is mounted on the first main surface and that receives the second transmission signal amplified by the second power amplifier. The first output matching circuit and the second output matching circuit are mounted along a second direction intersecting with the first direction.
Abstract:
A radio-frequency module includes a transmission path which has one end connected to a transmission terminal and on which a transmission signal in Band A is transmitted; a reception path (62) which has one end connected to a reception terminal (120B) and on which a reception signal in Band B is transmitted; a reception path (63) which has one end connected to a reception terminal (120C) and on which a reception signal in Band C is transmitted; a switch (11) having a common terminal (11a) and selection terminals (11b and 11c); and a switch (12) having a common terminal (12a) and selection terminals (12b and 12c).
Abstract:
A radio frequency circuit includes a first acoustic wave filter that is connected to a common terminal and includes a first acoustic wave resonator, a first LC filter that is connected to the common terminal via the first acoustic wave filter and includes at least one of an inductor or a capacitor, a second acoustic wave filter that is connected to the common terminal and includes a second acoustic wave resonator, and a second LC filter that is connected to the common terminal via the second acoustic wave filter and includes at least one of an inductor or a capacitor.
Abstract:
A radio frequency module includes: a switch that includes: a common terminal connected to a first common transmission path; a first selection terminal connected to a first transmission path; and a second selection terminal connected to a second transmission path, and switches between connecting the common terminal to the first selection terminal and to the second selection terminal; a transmission power amplifier disposed on the module board and on first common transmission path; and first circuit components disposed on a reception path. The first transmission path is a path through which a transmission signal of a first communication band is transferred, the second transmission path is a path through which a transmission signal of a second communication band is transferred, the switch is disposed on a first principal surface, and at least one of the first circuit components is disposed on a second principal surface.
Abstract:
A radio-frequency circuit includes a first switch which includes a common terminal, a first selection terminal, and a second selection terminal, and switches between connecting the common terminal and the first selection terminal and connecting the common terminal and the second selection terminal; a first low-noise amplifier including an input terminal connected to the first selection terminal, and a second low-noise amplifier including an input terminal connected to the second selection terminal. The frequency band in which the first low-noise amplifier amplifies a radio-frequency signal by at least a predetermined gain includes the frequency band in which the second low-noise amplifier amplifies a radio-frequency signal by at least a predetermined gain.
Abstract:
A filter unit of a high-frequency module includes SAW resonators connected in series with first and second series connection terminals therebetween, first and second shunt connection terminals, and additional SAW resonators. One end of one SAW resonator is connected to a connection node of other SAW resonators via a connection conductor, and the other end of the one SAW resonator is connected to the first shunt connection terminal via a connection conductor. The first shunt connection terminal is connected to ground via an inductor. A matching element is connected between the second series connection terminal and the second external connection terminal. The matching element is inductively coupled or capacitively coupled to the connection conductor.
Abstract:
A branching circuit includes a transmission filter and a reception filter. The transmission filter is connected between a transmission signal input terminal and an antenna connection terminal. The reception filter is connected between the antenna connection terminal and a reception signal output terminal in series together with a first phase shift circuit and a second phase shift circuit. A first amplitude adjustment circuit and a second amplitude adjustment circuit are connected in series between the antenna connection terminal and the reception signal output terminal. A junction point between the first amplitude adjustment circuit and the second amplitude adjustment circuit is connected to a junction point between the first phase shift circuit and the second phase shift circuit. The first and second phase shift circuits adjust the phase of a transmission signal that leaks to the reception side and that is to be canceled out. The first and second amplitude adjustment circuits adjust the amplitude of the transmission signal that is to be canceled out.
Abstract:
In a substrate that improves isolation characteristics of a high-frequency-side signal path and a low-frequency-side signal path, a duplexer, and a substrate module, a package substrate includes two SAW filters mounted thereon and defines a portion of the duplexer. A substrate body includes main surfaces that oppose each other. Land electrodes are provided on one of the main surfaces and are used to connect either of the two SAW filters. Land electrodes are provided on one of the main surfaces and are used to connect a mounting substrate on which the duplexer is mounted and are respectively superposed with the land electrodes when viewed in plan from a z-axis direction. The land electrodes and the land electrodes, which are superposed with each other when viewed in plan from the z-axis direction, are electrically connected to each other.
Abstract:
A circuit substrate on which a duplexer is mounted includes a substrate body. First, second and third external electrodes are provided on a first main surface of the substrate body. Fourth, fifth and sixth external electrodes are provided on a second main surface of the substrate body. First, second and third signal paths connect the first, second and third external electrodes to the fourth, fifth and sixth external electrodes, respectively. First and second ground conductors are embedded in the substrate body, and overlap with a mounting area so as to contain the mounting area where the duplexer is mounted, in a planar view seen from the z-axis direction. The first, second and third signal paths extend from the inside of the mounting area to the outside of the mounting area between the first main surface and the second ground conductor.
Abstract:
A high-frequency module includes a mounting substrate, a first antenna switch, a second antenna switch, a filter (303), and a filter (307). The filter (303) and the filter (307) are respectively connected with an output terminal (204) and an output terminal (208). The second antenna switch is configured to be able to simultaneously execute connection between an input terminal and the output terminal (204) and connection between the input terminal and the output terminal (208). In plan view of the mounting substrate, a distance between an antenna terminal and the first antenna switch is shorter than a distance between the antenna terminal and the second antenna switch. A distance between the first antenna switch and the filter (303) is longer than a distance between the second antenna switch and the filter (303).