Abstract:
The present invention provides a method for producing a waterproof organic thin film being capable of restraining the generation of defects such as a crack. The method for producing a waterproof organic thin film includes a waterproofing step of preparing a long laminate having an organic thin film and bringing at least the organic thin film into contact with a waterproofing-treatment liquid, a washing step of washing at least the organic thin film surface of the long laminate, and a conveying step to be performed between the waterproofing step and the washing step, the conveying step being a step of conveying the long laminate from the waterproofing step to the washing step, wherein in the conveying step, the long laminate is conveyed while the waterproofing-treatment liquid remaining on the organic thin film surface is caused to flow relatively to the organic thin film surface.
Abstract:
An adhesive is provided that shows excellent adhesion even when any one of a glass and a thermoplastic resin is used as an adherend, and that is excellent in solvent resistance. An adhesive according to an embodiment is used for an adherend that includes a glass and/or a resin layer including a thermoplastic resin (A), and the adhesive includes: a thermoplastic resin (b) having a glass transition temperature (Tg) of more than 200° C.; a thermosetting monomer (c) having at least one substituent represented by —SiR′x(OR)y where R represents a linear or branched alkyl group having 1 to 5 carbon atoms, R′ represents a linear or branched alkyl group having 1 to 5 carbon atoms, x represents an integer of from 0 to 2, y represents an integer of from 1 to 3, and x+y equals 3; and a catalyst (d) that acts on the substituent represented by —SiR′x(OR)y.
Abstract:
The present invention provides an optical laminated body having a patterning polarizer layer in which a more complicated pattern can be set. The optical laminated body 1A of the present invention has a patterning polarizer layer 3A having at least two polarizing regions 31A and 32A having different single transmittances, and a substrate 2A. The two polarizing regions 31A and 32A are different in thickness.
Abstract:
The present invention relates to a water-resistant organic thin film obtained by crosslinking, with organic nitrogen compounds, an organic thin film comprising an organic dye having an anionic group, wherein the organic nitrogen compounds are first, second, and third acyclic organic nitrogen compounds each having two or more nitrogen atoms per molecule, wherein the nitrogen atoms of each of the first, second, and third organic nitrogen compounds are each in a cationic group, and the relation A≦0.4 nm
Abstract:
A method for manufacturing a water resistant optically anisotropic film capable of suppressing the generation of a defect such as a crack or separation is provided. The method for manufacturing the water resistant optically anisotropic of the present invention includes a water resistant treatment step of bringing an optically anisotropic film containing an organic dye having an anionic group into contact with a water resistant treatment liquid containing a multivalent cationic compound and a monovalent cationic compound, and the mass ratio of the multivalent cationic compound and the monovalent cationic compound contained in the water resistant treatment liquid, monovalent cationic compound/multivalent cationic compound, is 0.01 to 2.
Abstract:
Provided is an image display mirror that includes a half mirror and an image display apparatus, reduces an influence of a reflected image provided by the half mirror, and is excellent in visibility of an image displayed on the image display apparatus. The image display mirror for a vehicle includes: a circularly polarizing plate arranged attachably and removably; a half mirror; and an image display apparatus in the stated order from a viewer side. In one embodiment, attached and removed states of the circularly polarizing plate are switched when an image is displayed on the image display apparatus and when the image is not displayed thereon, and when the image is displayed, the circularly polarizing plate is arranged between the half mirror and a viewer.
Abstract:
Provided is an image display mirror that includes a half mirror and an image display apparatus, reduces an influence of a reflected image provided by the half mirror, and is excellent in visibility of an image displayed on the image display apparatus. The image display mirror for a vehicle includes a first polarizing plate, a half mirror, and an image display apparatus in the stated order from a viewer side. In one embodiment, the first polarizing plate includes a polarizer, and the direction of the polarizer of the first polarizing plate is set so that the transmittance of light output from the image display apparatus that is transmitted through the first polarizing plate becomes maximum.
Abstract:
There is provided a transparent conductive film having a hardly visible pattern of the conductive part (conductive pattern) can be provided. A transparent conductive film of the present invention includes: a transparent base material; and a transparent conductive layer arranged on at least one side of the transparent base material, wherein: the transparent conductive layer includes a conductive part and an insulation part; the conductive part includes a metal nanowire; and the insulation part includes an air bubble and/or a non-conductive light-scattering body.
Abstract:
A conductive film is provided which is excellent in bending resistance, conductivity is not impaired even when the film is bent, and when the film is applied to an image display apparatus including a polarizing plate, the film can contribute to an improvement in visibility through a polarizing lens. A conductive film includes a retardation film; and a transparent conductive layer arranged on at least one surface of the retardation film, wherein: the retardation film has an in-plane retardation at a wavelength of 550 nm of from 90 nm to 190 nm; a ratio (Re[400]/Re[550]) of an in-plane retardation Re[400] of the retardation film at a wavelength of 400 nm to the in-plane retardation Re[550] of the retardation film at a wavelength of 550 nm is from 0.5 to 0.9; and the transparent conductive layer includes at least one of a conductive nanowire, a metal mesh, and a conductive polymer.
Abstract:
There is provided an image display apparatus having high contrast and making it difficult to visually observe its conductive pattern despite including a metal nanowire or a metal mesh. An image display apparatus of the present invention includes: a circularly polarizing plate, a transparent conductive film, and a display element comprising a reflector made of a metal in the stated order from a viewer side, wherein: the transparent conductive film comprises a transparent base material and a transparent conductive layer arranged on at least one side of the transparent base material; the transparent base material has an in-plane retardation Re of from 1 nm to 100 nm; and the transparent conductive layer comprises a metal nanowire or a metal mesh.