Abstract:
A high dynamic range image information hiding method includes embedding secret information and extracting the secret information. The step of embedding secret information includes obtaining three channel values of every pixel in an original high dynamic range image; according to every channel value and corresponding 5-bit exponent of every pixel, determining an embedding significance bit of the information to be embedded in every channel value of every pixel; embedding information into every channel value of every pixel; and obtaining a high dynamic range image embedded with the secret information. The step of extracting the secret information includes obtaining three channel values of every pixel in the high dynamic range image embedded with the secret information; obtaining an information embedding position of every channel value embedded with the information of every pixel; extracting information from every channel value embedded with the information of every pixel; and obtaining secret information sequences.
Abstract:
An objective assessment method for a stereoscopic image quality combined with manifold characteristics and binocular characteristics trains a matrix after dimensionality reduction and whitening obtained from natural scene plane images through an orthogonal locality preserving projection algorithm, for obtaining a best mapping matrix. Image blocks, not important for visual perception, are removed. After finishing selecting the image blocks, through the best mapping matrix, manifold characteristic vectors of the image blocks are extracted, and a structural distortion of a distorted image is measured according to a manifold characteristic similarity. Considering influences of an image luminance variation on human eyes, a luminance distortion of the distorted image is calculated according to a mean value of the image blocks. After obtaining the manifold similarity and the luminance similarity, quality values of the left and right viewpoint images are processed with linear weighting to obtain a quality value of the distorted stereoscopic image.
Abstract:
A video quality objective assessment method based on a spatiotemporal domain structure firstly combines a spatiotemporal domain gradient magnitude and color information for calculating a spatiotemporal domain local similarity, and then uses variance fusion for spatial domain fusion. The spatiotemporal domain local similarity is fused into frame-level objective quality value, and then a temporal domain fusion model is established by simulating three important global temporal effects, which are a smoothing effect, an asymmetric track effects and a recency effect, of a human visual system. Finally, the objective quality values of the distorted video sequence are obtained. By modeling the human visual temporal domain effect, the temporal domain weighting method of the present invention is able to accurately and efficiently evaluate the objective quality of the distorted video.
Abstract:
An image quality objective evaluation method based on manifold feature similarity is disclosed, which firstly adopts visual salience and visual threshold to remove image blocks which are unimportant to visual perception, namely, uses roughing selection and fine selection; and then utilizes the best mapping matrix after block selection to extract manifold feature vectors of image blocks which are selected from original undistorted natural scene images and distorted images to be evaluated; and then measures the structural distortion of distorted images according to manifold feature similarity; and then considers effects of image brightness changes on human eyes and obtains the brightness distortion of distorted images based on an average value of image blocks, and finally obtains quality scores according to structural distortion and brightness distortion; which allows the method of the present invention to have a higher evaluation accuracy, and also expands the evaluation capacity to various distortions.
Abstract:
A method for detecting a parfocality of a zoom-stereo microscope includes: acquiring four highest definitions corresponding to a plurality of images with a cooperation of four definition judging functions, acquiring a relatively clearest position according to the four highest definitions, comparing a definition in the relatively clearest position with a definition in a parfocal position to judge whether the relatively clearest position is the parfocal position, then adjusting a magnification of the zoom-stereo microscope to acquire the parfocal positions at a finite number of the discrete magnifications, and finally fitting a parfocal curve at the continuous magnifications. The method according to the present invention implements a parfocality detection of the stereo microscope automatically and effectively and increases a productivity, and has a high detecting precision. In addition, the method according to the present invention has a good robustness, so that users needn't intervene and adjust frequently.
Abstract:
A method for color correction of a pair of colorful stereo microscope images is provided, which transmits the color information of the foreground areas and the background area of the reference image to the aberrated image separately for avoiding transmission error of the color information of the varied areas of the pair of the images, thus sufficiently improves the accuracy of the color correction, reduces the difference between the color of the reference image and the color of the aberrated image, and well prepares for the stereo matching of the pair of colorful stereo microscope images as well as for the three-dimensional reconstruction and three-dimensional measurement; on the other hand, during the correction, the correcting procedure is provided automatically without manual work.