Abstract:
Various embodiments may relate to an optoelectronic component, including an optically active region formed for taking up and/or for providing electromagnetic radiation, at least one first contact structure, wherein the optically active region is electrically conductively coupled to the first contact structure, and an encapsulation structure with a second contact structure, wherein the encapsulation structure is formed on or above the optically active region and the first contact structure, and an electrically conductive structure formed for electrically conductively connecting the first contact structure to the second contact structure, wherein the encapsulation structure is at least partly formed by an electrically insulating molding compound, wherein the electrically insulating molding compound at least partly surrounds the electrically conductive structure.
Abstract:
A method for operating an optoelectronic assembly which includes at least one component string having at least one section, wherein the section includes at least one light emitting diode element, is provided. According to the method, the component string is supplied with electrical energy, the supply of the component string with electrical energy is interrupted, a total voltage is detected, which is present between an input and an output of the section of the component string, the total voltage is compared with a sum of threshold voltages of all the light emitting diode elements. It is identified that the section has no short circuit if the total voltage is equal or at least approximately equal to the sum of the threshold voltages, and/or it is identified that the section has a short circuit if the total voltage is less than the sum of the threshold voltages.
Abstract:
Various embodiments may relate to an optoelectronic component apparatus, including a carrier, an optoelectronic component and a thermoelectric component on or above the carrier. The optoelectronic component has a planar, optically active region. The thermoelectric component has at least one thermoelectrically sensitive section, wherein the thermoelectrically sensitive section has a first electrical conductivity at a first temperature and a second electrical conductivity at a second temperature, and wherein the thermoelectrically sensitive section is thermally connected to the optoelectronic component in a planar fashion. The thermoelectric component is formed as a temperature sensor and/or thermogenerator.
Abstract:
A method can be used for operating an organic light-emitting component. The organic light-emitting component has a first electrode and a second electrode, between which an organic functional layer stack with at least one organic light-emitting layer is arranged. The first and second electrodes and the organic functional layer stack have a large area. Electrical contact is made with the first electrode via at least two electrical connection elements in the peripheral regions, in which different electric voltages are applied to the at least two electrical connection elements and the different electric voltages vary over time. A lighting device for implementing the method is also specified.
Abstract:
An arrangement for operating an organic radiation-emitting component (D) is specified. The arrangement comprises a driver circuit (T) with at least two driver outputs (TA1, TAn), a decoupling unit (E) with at least two inputs (EE1, EEn) and outputs (EA1, EAn) corresponding to the inputs (EE1, EEn), the radiation-emitting component (D) with at least two electrodes (DE1, DEn), and a contact sensor (S) with a sensor electrode (SE1) which is at least partially formed by one of the electrodes (DE1, DEn) of the radiation-emitting component (D). The radiation-emitting component (D) emits electromagnetic radiation during operation. One of the driver outputs (TA1, TAn) of the driver circuit (T) is coupled in each case, in a low-impedance manner using DC technology, to one of the electrodes (DE1, DEn) of the radiation-emitting component (D). The driver circuit (T) and the contact sensor (S) can be coupled to a common energy source (Q). The contact sensor (S) is decoupled from the driver circuit (T) by means of the decoupling unit (E) in such a manner that contact of the sensor electrode (S) by a user can be detected during operation of the radiation-emitting component (D).
Abstract:
According to the present disclosure, an optoelectronic assembly is disclosed with at least one optoelectronic component, and a sensor circuit. The sensor circuit includes at least one energy supply circuit and an ascertainment circuit having at least one energy storage unit and a detection unit. The ascertainment circuit and the at least one optoelectronic component are electrically connected to one another in parallel. The at least one energy supply circuit is configured to supply electrical energy to the at least one optoelectronic component and the energy storage unit. The energy stored in the energy storage unit is supplied independently of the electrical energy supplied to the at least one optoelectronic component. The ascertainment circuit is configured such that the detection unit detects a change of the electrical energy stored in the energy storage unit depending on a change of the energy stored in the at least one optoelectronic component.
Abstract:
In various embodiments, an organic light-emitting organic is provided. The organic light-emitting component may include a first electrode layer, an organic functional layer structure over the first electrode layer, and a second electrode layer over the organic functional layer structure. The second electrode layer and the organic functional layer structure are divided into subregions which are arranged laterally next to one another, which are respectively at least partially separated from one another. A plurality of the subregions are electrically connected to at least two neighboring subregions by at least two corresponding connecting elements with are formed by the second electrode layer and the organic functional layer structure.
Abstract:
A method for operating an optoelectronic assembly which includes at least one component string having at least one section, wherein the section includes at least one light emitting diode element, is provided. According to the method, the component string is supplied with electrical energy, the supply of the component string with electrical energy is interrupted, a total voltage is detected, which is present between an input and an output of the section of the component string, the total voltage is compared with a sum of threshold voltages of all the light emitting diode elements. It is identified that the section has no short circuit if the total voltage is equal or at least approximately equal to the sum of the threshold voltages, and/or it is identified that the section has a short circuit if the total voltage is less than the sum of the threshold voltages.
Abstract:
An organic light-emitting diode includes a substrate with a top; an organic layer on the top that generates radiation; first and second electrical contact area at or on the top that electrically contacts the diode; a holding device by which the diode is mechanically supported and electrically contacted; and a cover sheet on a side of the organic layer remote from the substrate that protects the organic layer, wherein at least one opening is in the cover sheet and the opening, in plan view, is surrounded by the cover sheet and the organic layer; the areas are located at an edge of the opening and freely accessible; the device engages through the opening; the first area has a different average distance from the opening than the second area; and the electrical areas are each arranged concentrically around the opening and partially or completely surround the opening in plan view.
Abstract:
A method for operating an optoelectronic assembly which includes at least one component string having at least one section, wherein the section includes at least one light emitting diode element, is provided. According to the method, the component string is supplied with electrical energy, the supply of the component string with electrical energy is interrupted, a total voltage is detected, which is present between an input and an output of the section of the component string, the total voltage is compared with a sum of threshold voltages of all the light emitting diode elements. It is identified that the section has no short circuit if the total voltage is equal or at least approximately equal to the sum of the threshold voltages, and/or it is identified that the section has a short circuit if the total voltage is less than the sum of the threshold voltages.