Abstract:
To establish radio channels according to a DAMA scheme, FDM radio channels are divided into channel groups, each containing a predetermined number of neighboring channels. The base station includes group modems for FDM modem processing, on a basis of each channel group, into uplink baseband signals uplink radio signals received from source stations in uplink channel groups and downlink baseband signals into downlink radio signals sent to destination stations in downlink channel groups and a switching unit for switching the baseband signals from the uplink channel groups into the downlink channel groups according to the destination stations. Each terminal station includes a group modem for FDM modem processing en-bloc downlink channel group radio signals into downlink terminal baseband signals and uplink terminal baseband signals into uplink channel group radio signals and baseband processors for processing the downlink terminal baseband signals for supply to the communication terminals according to the neighboring channels of the downlink channel group and uplink baseband signals of the communication terminals into the uplink terminal baseband signals according to the neighboring channels of the uplink channel group.
Abstract:
In a phase divider, a complex signal containing a sequence of samples of real and imaginary values is limited to a unit amplitude and multiplied by a first complex multiplier with a first feedback complex signal, the output the multiplier being fed through a loop filter to a second complex multiplier where the signal is multiplied with a second feedback complex signal. The output of the second multiplier is limited to a unit amplitude, delayed by a sample interval and applied to the second complex multiplier as the second feedback complex signal. The first feedback complex signal is derived by a circuit that raises the frequency the delayed signal by a desired factor.
Abstract:
For processing a multiplied signal into a modified signal in a demodulator circuit, an adder (34) sums up a first, a second, and a third processed signal into a sum signal for use as the modified signal. A first processing circuit (31) processes the multiplied signal into the first processed signal. A second processing circuit (32) processes the multiplied signal into the second processed signal in accordance with a conjugate complex clock and a complex local signal. A third signal processing circuit (33) processes the multiplied signal into the third processed signal in accordance with a complex clock and a conjugate complex local signal. The complex clock signal represents a first complex number. The complex local signal represents a second complex number. The conjugate complex clock signal represents a complex conjugate of the first complex number. The conjugate complex local signal represents a complex conjugate of the second complex number.
Abstract:
A digital output of a quasi-coherent detection circuit is M-th power multiplied and then processed by a set of digital filters to generate signals for coherent detection and clock interpolation. The digital output of the quasi-coherent detection circuit is also fed, through a delay circuit, a coherent detection circuit which in turn processes the digital output of the quasi-coherent detection circuit, using the coherent detection signal. Timing error information indicative of the difference between phases of an interpolated clock and the interpolation signal determines the weighting factor of data interpolation channel filter which in turn interpolate and output coherent-detected data signal.
Abstract:
A phase-lock loop device for phase locking a device input signal representing a first complex number and having a device input phase which should be locked into a locked phase, includes the following. A first complex multiplier to calculate a first product of the first complex number and a first conjugate complex number to produce a first complex product signal. The first conjugate complex number is represented by a first conjugate signal which is produced by delaying and processing the device input signal. A second complex multiplier to calculate a second product of a phase processed signal and a multiplier input signal to produce a second complex product signal. The phase processed signal is produced by filtering and processing the first complex product signal. The multiplier input signal is produced by delaying and limiting the second complex product signal. A third complex multiplier to calculate a third product of the first complex number and a second conjugate complex number to produce a third complex product signal. The second conjugate complex number is represented by a second conjugate signal which is produced by processing the second complex product signal. A fourth complex multiplier to calculate a fourth product of the second complex product signal and a filtered signal to produce a fourth complex product signal having the locked phase. the filtered signal is produced by filtering the third complex product signal.
Abstract:
For use in a satellite communication system which carries out communication through a satellite by the use of an up-link frequency band and a down-link frequency band, each of the up-link and the down-link frequency bands has a plurality of frequency subbands spaced apart from one another with frequency gap bands interposed between the frequency subbands. An earth station comprises a modulating arrangement (47) for modulating a selected one of the frequency subbands of the up-link frequency band by a first input signal into a subband transmission signal; a first transmitting arrangement (51) coupled to the modulating arrangement for transmitting the subband transmission signal through the selected one of the frequency subbands; a spread spectrum processing arrangement (50) for processing a second input signal into a spread spectrum transmission signal in the up-link frequency band; and a second transmitting arrangement (51) coupled to the spread spectrum processing arrangement for transmitting the spread spectrum transmission signal through the up-link frequency band.
Abstract:
A fast pull-in phase synchronizing circuit, including a phaselock loop, having an extended pull-in range. The phase synchronizing circuit includes, besides a conventional phaselock loop, at least a .pi./2+n.pi. (n being an integer) phase shifter, a mixer, a low pass filter and another mixer. The phase shifter receives the output of the phaselock loop VCO, the output of the phase shifter being multiplied in the mixer with the circuit input signal. This multiplied signal is applied as an input to the low pass filter, which produces a low frequency output proportional to the frequency difference between the input and output signals. This low frequency signal is mixed in the other mixer with the circuit input signal to produce the phaselock loop input signal. The phaselock loop input is phase compared with the VCO output in the phaseback loop phase comparator. This phase comparator output has by reason of the phase synchronizing circuit of the invention two components, one representing the frequency discrimination characteristic of the circuit, the other the phase comparison characteristic. When in its unsynchronized state, the circuit of the invention operates as an automatic frequency control circuit causing the VCO oscillating frequency to vary in a direction to decrease the frequency error, W.sub.in -W.sub.ont. Once the frequency error has been reduced to the pull-in range, i.e. the synchronized range, the circuit of the invention operates to produce phase synchronization.