Abstract:
A field terminal plug assembly including an RJ45 plug connected to a termination zone. The termination zone includes a wire cap, a rear sled, and an electrical board assembly with attached insulation displacement contacts (IDCs) electrically connected to the twisted wire-pairs of assembly cable. The wire cap is configured to terminate twisted wire-pairs of a communications cable to the IDCs when the wire cap is inserted into the rear sled. The IDCs contain at least a first and a second IDC, the first IDC having a first horizontal length and a first vertical length and the second IDC having a second horizontal length and a second vertical length. The first vertical length does not equal the second vertical length but the first vertical length plus the first horizontal length equals the second vertical length plus the second horizontal length.
Abstract:
A vertical cable manager includes a base frame and a door. The base frame has upper and lower support legs and upper and lower crossbars between the support legs. The door has retractable hinge pins at corners of the door. The crossbars have hinge rod receptacles to receive respective hinge pins and elastic latch members having a flexible arm and a catch portion. The catch portions secure the hinge pins in the hinge rod receptacles with the door closed and are deflectable through elastic deformation of the flexible arm to allow travel of the hinge pins through the hinge rod receptacles and past the catch portions when the door is moved from an open to a closed position.
Abstract:
Disclosed herein are various communications systems allowing for multiple contacts points between plug contacts in a communications plug and plug interface contacts (PICs) in a communications jack. In some disclosed implementations, a communications plug including a first and a second plug contact mated with a communications jack having a first and a second plug PIC may form a plurality of plug/jack interfaces. The plug/jack interfaces may form multiple current paths between the communications plug and the communications jack. When a signal propagates between the communications plug and the communications jack, it may be split in the communications plug between a first current path and a second current path, and recombined in the communications jack after traveling through the plurality of plug/jack interfaces.
Abstract:
A communications system includes a modified RJ45 plug and a modified RJ45 jack. The communications system allows for backwards connectivity and interoperability with other RJ45 jacks and plugs by having two potential contact points on each the plug and the jack that may serve as an electrical interface between different types of connectors.
Abstract:
The present invention generally relates to the field of network communication, and more specifically, to the field of communication plugs used in network connectivity. In an embodiment, the present invention is a communication connector that includes: a housing; a printed circuit board (PCB) assembly positioned inside of the housing, the PCB assembly including a first PCB and a second PCB, the PCB assembly further including a plurality of vias, each of the vias extending at least partially through both of the first PCB and the second PCB; and a plurality of plug contacts, each of the plug contacts including an interface section and a base section, the base section being positioned inside one of the vias.
Abstract:
The present invention generally relates to the field of network communication. In an embodiment, the present invention is a breakaway RJ45 cable assembly that includes a standard RJ45 plug inserted into a modified RJ45 jack that, upon a sufficient amount of tension, releases the installed standard RJ45 plug. To insure that, as tension builds up in the cable assembly, the connection between the modified RJ45 jack and the patch cord to which the standard RJ45 plug is connected to experience tension substantially along the plug and jack body lengths the breakaway cable assembly is installed in the middle of a communication channel.
Abstract:
The present invention generally relates to communication connectors and internal components thereof. In one embodiment, the present invention is a communication jack comprising both front-rotated and back rotated plug interface contacts. In another embodiment, the present invention is a communication jack comprising a two-piece front sled. In yet another embodiment, the present invention is a communication jack that retains its functionality when mated with both eight-position and six-position plugs.
Abstract:
A faceplate assembly is disclosed. The faceplate assembly includes a cover and a backing plate. The cover has at least one hood positioned at an edge of the cover. The backing plate is connected to the cover. The hood creates an opening between the cover and the backing plate to enable cables to be routed therethrough. The backing plate also has an outer edge with a split to enable the backing plate to be installed over pre-installed cables.
Abstract:
The present invention generally relates to the field of network communications, and more specifically to networks for crosstalk reduction/compensation and communication connectors which employ such networks. In an embodiment, the present invention is an RJ45 jack with an orthogonal. compensation network to meet CAT6A or higher performance standard. For the 3:6-4:5 wire-pair combination, the orthogonal compensation network begins in the jack nose (plug interface contact (PIC)) section, and utilizes a flexible printed circuit board in the nose section, split PIC contacts in the rear nose, and circuitry in the rigid printed circuit board to create the orthogonal compensation network.
Abstract:
A field terminal plug assembly including an RJ45 plug connected to a termination zone. The termination zone includes a wire cap, a rear sled, and an electrical board assembly with attached insulation displacement contacts (IDCs) electrically connected to the twisted wire-pairs of assembly cable. The wire cap is configured to terminate twisted wire-pairs of a communications cable to the IDCs when the wire cap is inserted into the rear sled. The IDCs contain at least a first and a second IDC, the first IDC having a first horizontal length and a first vertical length and the second IDC having a second horizontal length and a second vertical length. The first vertical length does not equal the second vertical length but the first vertical length plus the first horizontal length equals the second vertical length plus the second horizontal length.