Abstract:
A wearable device including a skin sensor and a processor is provided. The processor is configured to receive an authentication data for authenticating a user when a wearing state of the wearable device is adjacent to a skin surface of the user, share an authenticated state in response to a request from an electronic device when the authentication data matches a pre-stored data and the skin sensor determines that the wearable device does not leave the skin surface after the authentication data is received, and stop sharing the authenticated state when the skin sensor determines that the wearable device leaves the skin surface during the sharing.
Abstract:
There is provided a handheld device for an interactive system. The handheld device identifies the timing that a user operates the handheld device to determine whether to turn on an indicating light for optical sensing to avoid the unnecessary power consumption.
Abstract:
There is provided a touch display device including a display and a touch control device. The display includes a glass substrate. The touch control device is attached to the glass substrate and includes a touch zone, a fingerprint detection zone and a control circuit. The touch zone includes a matrix of first detecting cells arranged at a first grid distance. The fingerprint detection zone includes a matrix of second detecting cells arranged at a second grid distance. The control circuit is configured to control detection operations of the touch zone and the fingerprint detection zone and to adjust an effective grid distance of the fingerprint detection zone according to a first detected touch position.
Abstract:
An optical object recognition system includes at least two beacons, an image sensor and a processing unit. The beacons operate in an emission pattern and the emission pattern of the beacons has a phase shift from each other. The image sensor captures image frames with a sampling period. The processing unit is configured to recognize different beacons according to the phase shift of the emission pattern in the image frames.
Abstract:
There is provided a remote control system including a controlled device and a remote device. The controlled device has a light source and moves according to a control signal from the remote device. The remote device is adapted to be operated by a user and includes an image sensor. The remote device determines a moving direction of the controlled device according to an imaging position of the light source in the image captured by the image sensor and a pointing position of the user, and outputs the control signal.
Abstract:
There is provided a mobile carrier and an auto following system using the mobile carrier. The mobile carrier is capable of capturing at least an image of a guiding light source and automatically following the guiding light source based on the captured image of the guiding light source. The mobile carrier is further disposed with a mobile light source for a remote image sensing device to capture an image of the mobile light source while the mobile carrier cannot capture the image of the guiding light source, so that the mobile carrier can be guided by a control signal provided according to the captured image of the mobile light source.
Abstract:
A method of synchronization adjustment is applied to an optical detecting device, so as to synchronize an exposure timing sequence of an image detector with a light emitting timing sequence of an indicating light source. The method includes acquiring a continued image set, analyzing intensity of each image of the continued image set, and adjusting the exposure timing sequence according to duty cycle of the image detector and intensity ratio of at least two images. An exposure frequency of the image detector is greater than a flickering frequency of the indicating light source.
Abstract:
A locating method applied to an optical touch device is disclosed. The optical touch device includes at least one image detecting component for detecting an imaging position of an object and generating a touch position of the object on a plane according to the imaging position. The at least one image detecting component includes a plurality of pixels. The locating method includes dividing the pixels into a first group and a second group along a first direction, analyzing dimension ratios of a darkness point respectively relative to the first group and the second group when the darkness point formed by the object is simultaneously detected by the first group and the second group, and calculating the imaging position of the darkness point inside the image detecting component according to the dimension ratios.
Abstract:
There is provided a smart control system including a host, at least one sensor and an informing device. The host identifies the activity of a specific member according to the detection result of the at least one sensor, and informs the specific member to take medicine on time or avoid eating specific ingredients using the informing device.
Abstract:
A system having a gesture sensor is provided. The gesture sensor includes an image sensing unit and a processing unit. The image sensing unit captures at least one gesture image of the user. The processing unit is electrically connected to the image sensing unit. The processing unit sends at least one control command to a control valve of the system according to the gesture image to change a status of the flow.