Abstract:
An engine assembly for use as an aircraft auxiliary power unit, having internal combustion engine(s) in driving engagement with an engine shaft, a generator having a generator shaft directly engaged to the engine shaft such as to be rotatable at a same speed, a compressor having an outlet in communication with the internal combustion engine inlet, and a turbine having an inlet in communication with the internal combustion engine outlet. The turbine may be a first stage turbine, and the assembly may include a second stage turbine having an inlet in communication with the first stage turbine outlet. A method of providing electrical power to an aircraft is also discussed.
Abstract:
An inlet guide assembly for a turbine receiving a pulsed flow, including a duct having an internal volume, and an inlet port, first outlet nozzle and second outlet nozzle each communicating with the internal volume. The inlet port is configured to receive at least part of the pulsed flow. The first and second outlet nozzles each define a respective nozzle area communicating between the internal volume and a flow path of the turbine. The first and second outlet nozzles are spaced from one another with the first outlet nozzle located closer to the inlet port than the second outlet nozzle relative to a flow direction through the duct, the nozzle area of the first outlet nozzle being smaller than the nozzle area of the second outlet nozzle. A compound engine assembly and method of introducing a pulsed flow into a flow path of a turbine are also discussed.
Abstract:
A compound cycle engine having a rotary internal combustion engine, a first turbine, and a second turbine is discussed. The exhaust port of the internal combustion engine is in fluid communication with the flowpath of the first turbine upstream of its rotor. The rotors of the first turbine and of each rotary unit drive a common load. The inlet of the second turbine is in fluid communication with the flowpath of the first turbine downstream of its rotor. The first turbine is configured as a velocity turbine and the first turbine has a pressure ratio smaller than that of the second turbine. A method of compounding a rotary engine is also discussed.
Abstract:
An auxiliary power unit for an aircraft includes a rotary intermittent internal combustion engine, a turbine having an inlet in fluid communication with an outlet of the engine, the turbine compounded with the engine, a compressor having an inlet in fluid communication with an environment of the aircraft and an outlet in fluid communication with the aircraft, the compressor rotatable independently of the turbine, an electric motor drivingly engaged to the compressor, and a transfer generator drivingly engaged to the engine, the transfer generator and the electric motor being electrically connected to allow power transfer therebetween. The compressor or an additional compressor may be in fluid communication with the inlet of the engine. A method of operating an auxiliary power unit of an aircraft is also discussed.
Abstract:
A turboprop engine assembly for an aircraft, including an internal combustion engine having a liquid coolant system, an air duct in fluid communication with an environment of the aircraft, a heat exchanger received within the air duct having coolant passages in fluid communication with the liquid coolant system and air passages air passages in fluid communication with the air duct, and an exhaust duct in fluid communication with an exhaust of the internal combustion engine. The exhaust duct has an outlet positioned within the air duct downstream of the heat exchanger and upstream of an outlet of the air duct, the outlet of the exhaust duct spaced inwardly from a peripheral wall of the air duct. In use, a flow of cooling air surrounds a flow of exhaust gases. A method of discharging air and exhaust gases in an turboprop engine assembly having an internal combustion engine is also discussed.
Abstract:
An internal combustion engine with at least two movable bodies each being sealingly and movably received within a respective internal cavity to define at least one combustion chamber of variable volume. A pilot fuel injector and a main fuel injector are provided for each movable body. A first chamber of a common rail is in fluid communication with each main fuel injector, and a second chamber of the common rail in fluid communication with each pilot fuel injector. A first metering or pressure regulating valve is in fluid communication with the first chamber. A second metering or pressure regulating valve provides selective fluid communication between the first and second chambers; the metering or pressure regulating valves are settable at different pressure values from one another. The movable bodies may be reciprocating pistons. A method of combusting fuel in an internal combustion engine is also provided.
Abstract:
A compound engine assembly with an engine core including at least one internal combustion engine, a turbine section, and a compressor having an outlet in fluid communication with an inlet of the engine core. A casing is connected to the turbine section, compressor and engine core. A mount cage is connected to mounts attached to the casing between the compressor and a hot zone including the turbine section and exhaust pipe(s). The struts are separated from the hot zone by at least one firewall. The mount cage may include a plurality of struts all extending from the mounts away from the turbine section and engine core. The casing may be a gearbox module casing through which the turbine shaft in engaged with the engine shaft. The mount cage may be completely contained within an axial space with the turbine section and exhaust pipe(s) being located outside of the axial space.
Abstract:
A compound engine assembly with an engine core including at least one internal combustion engine, a compressor, and a turbine section where the turbine shaft is configured to compound power with the engine shaft. The turbine section may include a first stage turbine and a second stage turbine. The turbine shaft is rotationally supported by a plurality of bearings all located on a same side of the compressor rotor(s) and all located on a same side of the turbine rotor(s), for example all located between the compressor rotor(s) and the turbine rotor(s), such that the compressor rotor(s) and the turbine rotor(s) are cantilevered. A method of driving a rotatable load of an aircraft is also discussed.
Abstract:
Aircraft engines and methods for operating such aircraft engines during transient conditions are described. An exemplary method comprises identifying a transient condition of the aircraft engine and at least partially absorbing the transient condition using an electrical system of the aircraft. When the transient condition requires acceleration of the engine, absorbing the transient condition may comprise transferring power from the electrical system to the high-pressure spool of the engine. When the transient condition requires deceleration of the engine, absorbing the transient condition may comprise transferring power from the high-pressure spool to the electrical system.
Abstract:
An internal combustion engine including a pilot subchamber, a pilot fuel injector having a tip in communication with the pilot subchamber, an ignition element positioned to ignite fuel within the pilot subchamber, and a main fuel injector spaced apart from the pilot fuel injector. The engine includes a common rail in fluid communication with the main fuel injector and with the pilot fuel injector. The internal combustion engine may be a reciprocating engine. A method of combusting fuel in an internal combustion engine is also provided.