摘要:
What is provided is an enhanced dynamic address translation facility. In one embodiment, a virtual address to be translated and an initial origin address of a translation table of the hierarchy of translation tables are obtained. Based on the origin address, a segment table entry is obtained which contains a format control field and an access validity field. If the format control and access validity are enabled, the segment table entry further contains an access control and fetch protection fields, and a segment-frame absolute address. Store operations to the block of data are permitted only if the access control field matches a program access key provided by either a Program Status Word or an operand of a program instruction being executed. Fetch operations from the desired block of data are permitted only if the program access key associated with the virtual address is equal to the segment access control field.
摘要:
What is disclosed is a frame management function defined for a machine architecture of a computer system. In one embodiment, a frame management instruction is obtained which identifies a first and second general register. The first general register contains a frame management field having a key field with access-protection bits and a block-size indication. If the block-size indication indicates a large block then an operand address of a large block of data is obtained from the second general register. The large block of data has a plurality of small blocks each of which is associated with a corresponding storage key having a plurality of storage key access-protection bits. If the block size indication indicates a large block, the storage key access-protection bits of each corresponding storage key of each small block within the large block is set with the access-protection bits of the key field.
摘要:
Embodiments of the invention relate to transforming a program-event-recording event into a run-time instrumentation event. An aspect of the invention includes enabling run-time instrumentation for collecting instrumentation information of an instruction stream executing on a processor. Detecting is performed, by the processor, of a program-event-recording (PER) event, the PER event associated with the instruction stream executing on the processor. A PER event record is written to a collection buffer as a run-time instrumentation event based on detecting the PER event, the PER event record identifying the PER event.
摘要:
Embodiments of the invention relate to monitoring processor characteristic information of a processor using run-time-instrumentation. An aspect of the invention includes executing an instruction stream on the processor and detecting a run-time instrumentation sample point of the executing instruction stream on the processor. A reporting group is stored in a run-time instrumentation program buffer based on the run-time instrumentation sample point. The reporting group includes processor characteristic information associated with the processor.
摘要:
Embodiments of the invention relate to modifying run-time-instrumentation controls (MRIC) from a lesser-privileged state. The MRIC instruction is fetched. The MRIC instruction includes the address of a run-time-instrumentation control block (RICCB). The RICCB is fetched based on the address included in the MRIC instruction. The RICCB includes values for modifying a subset of the processor's run-time-instrumentation controls. The subset of run-time-instrumentation controls includes a runtime instrumentation program buffer current address (RCA) of a runtime instrumentation program buffer (RIB) location. The RIB holds run-time-instrumentation information of the events recognized by the processor during program execution. The values of the RICCB are loaded into the run-time-instrumentation controls. Event information is provided to the RIB based on the values that were loaded in the run-time-instrumentation control.
摘要:
Embodiments of the invention relate to implementing run-time instrumentation directed sampling. An aspect of the invention includes fetching a run-time instrumentation next (RINEXT) instruction from an instruction stream. The instruction stream includes the RINEXT instruction followed by a next sequential instruction (NSI) in program order. The method further includes executing the RINEXT instruction by a processor. The executing includes determining whether a current run-time instrumentation state enables setting a sample point for reporting run-time instrumentation information during program execution. Based on the current run-time instrumentation state enabling setting the sample point, the NSI is a sample instruction for causing a run-time instrumentation event. Based on executing the NSI sample instruction, the run-time instrumentation event causes recording of run-time instrumentation information into a run-time instrumentation program buffer as a reporting group.
摘要:
Machine instructions, referred to herein as a long Convert from Zoned instruction (CDZT) and extended Convert from Zoned instruction (CXZT), are provided that read EBCDIC or ASCII data from memory, convert it to the appropriate decimal floating point format, and write it to a target floating point register or floating point register pair. Further, machine instructions, referred to herein as a long Convert to Zoned instruction (CZDT) and extended Convert to Zoned instruction (CZXT), are provided that convert a decimal floating point (DFP) operand in a source floating point register or floating point register pair to EBCDIC or ASCII data and store it to a target memory location.
摘要:
Notification of hardware actions to be taken responsive to hardware events is facilitated. An operating system coupled, but external to, the hardware notifies firmware of the hardware action to be taken.
摘要:
In a logically partitioned host computer system comprising host processors (host CPUs) partitioned into a plurality of guest processors (guest CPUs) of a guest configuration, a perform topology function instruction is executed by a guest processor specifying a topology change of the guest configuration. The topology change preferably changes the polarization of guest CPUs, the polarization related to the amount of a host CPU resource is provided to a guest CPU.
摘要:
A method, apparatus, and computer program product are described for implementing a trusted computing environment within a data processing system where the data processing system includes a single hardware trusted platform module (TPM). Multiple logical partitions are provided in the data processing system. A unique context is generated for each one of the logical partitions. When one of the logical partitions requires access to the hardware TPM, that partition's context is required to be stored in the hardware TPM. The hardware TPM includes a finite number of storage locations, called context slots, for storing contexts. Each context slot can store one partition's context. Each one of the partitions is associated with one of the limited number of context storage slots in the hardware TPM. At least one of the context slots is simultaneously associated with more than one of the logical partitions. Contexts are swapped into and out of the hardware TPM during runtime of the data processing system so that when ones of the partitions require access to the hardware TPM, their required contexts are currently stored in the hardware TPM.