摘要:
In a telemanipulation system for manipulating objects located in a workspace at a remote worksite by an operator from an operator's station, such as in a remote surgical system, the remote worksite having a manipulator with an end effector for manipulating an object at the workspace, such as a body cavity, a controller including a hand control at the control operator's station for remote control of the manipulator, an image capture device, such as a camera, and image output device for reproducing a viewable real-time image, the improvement wherein a position sensor associated with the image capture device senses position relative to the end effector and a processor transforms the viewable real-time image into a perspective image with correlated manipulation of the end effector by the hand controller such that the operator can manipulate the end effector and the manipulator as if viewing the workspace in true presence.
摘要:
The invention is directed to mainpulator assembly (2) for holding and manipulating a surgical instrument (14) in a telerobotic system. The assembly comprises a base (6) fixable by passive or power driven positioning devices to a surface, such as an operating table, and an instrument holder (4) movably mounted on the base. The instrument holder comprises a chassis (6) and an instrument support (70) movably mounted on the body and having an interface engageable with the surgical instrument to releasably mount the instrument to the instrument holder. A drive assembly (7) is operatively coupled to the instrument holder for providing the instrument with at least two degrees of freedom. The instrument holder is separable from the base and the drive assembly so that the holder can be sterilized. The assembly further includes a force sensing element (52) mounted distal to the holder and the drive assembly for detecting forces exerted on the surgical instrument and providing feedback to the surgeon. The assembly is attached to a remote center positioner (300) for constraining the instrument to rotate a point coincident with the entry incision and an inclinometer (350) for preventing gravitational forces acting on the system's mechanisms from being felt by the surgeon.
摘要:
A teleoperator system with telepresence is shown which includes right and left hand controllers (72R and 72L) for control of right and left manipulators (24R and 24L) through use of a servomechanism that includes computer. The teleoperator system comprises a surgical system suited for endoscopic surgery. The surgical system includes a surgical instrument, a servomechanism and a controller. The surgical includes an insertion section and a control section. The insertion section comprises a forearm, a wrist and an end effector in the form of a surgical instrument head selected from the group consisting of retractors, electrosurgical cutters, electrosurgical coagulators, forceps, needle holders, scissors, blades and irrigators. The control section comprises a plurality of motors and linkages which operate to insert and retract the forearm, rotate the forearm, pivot the forearm, and pivot the wrist link about the wrist joint.
摘要:
A teleoperator system with telepresence is shown which includes right and left hand controllers (72R and 72L) for control of right and left manipulators (24R and 24L) through use of a servomechanism that includes computer (42). Cameras (46R and 46L) view workspace (30) from different angles for production of stereoscopic signal outputs at lines (48R and 48L). In response to the camera outputs a 3-dimensional top-to-bottom inverted image (30I) is produced which, is reflected by mirror (66) toward the eyes of operator (18). A virtual image (30V) is produced adjacent control arms (76R and 76L) which is viewed by operator (18) looking in the direction of the control arms. By locating the workspace image (30V) adjacent the control arms (76R and 76L) the operator is provided with a sense that end effectors (40R and 40L) carried by manipulator arms (34R and 34L) and control arms (76R and 76L) are substantially integral. This sense of connection between the control arms (76R and 76L) and end effectors (40R and 40L) provide the operator with the sensation of directly controlling the end effectors by hand. By locating visual display (246) adjacent control arms (244R and 244L) image (240I) of the workspace is directly viewable by the operator. (FIGS. 12 and 13.) Use of the teleoperator system for surgical procedures also is disclosed. (FIGS. 7-9 and FIG. 13.)
摘要:
A teleoperator system with telepresence is shown which includes right and left hand controllers (72R and 72L) for control of right and left manipulators (24R and 24L) through use of a servomechanism that includes computer (42). Cameras (46R and 46L) view workspace (30) from different angles for production of stereoscopic signal outputs at lines (48R and 48L). In response to the camera outputs a 3-dimensional top-to-bottom inverted image (30I) is produced which, is reflected by mirror (66) toward the eyes of operator (18). A virtual image (30V) is produced adjacent control arms (76R and 76L) which is viewed by operator (18) looking in the direction of the control arms. By locating the workspace image (30V) adjacent the control arms (76R and 76L) the operator is provided with a sense that end effectors (40R and 40L) carried by manipulator arms (34R and 34L) and control arms (76R and 76L) are substantially integral. This sense of connection between the control arms (76R and 76L) and end effectors (40R and 40L) provide the operator with the sensation of directly controlling the end effectors by hand. By locating visual display (246) adjacent control arms (244R and 244L) image (240I) of the workspace is directly viewable by the operator. (FIGS. 12 and 13.) Use of the teleoperator system for surgical procedures also is disclosed. (FIGS. 7-9 and FIG. 13.)
摘要:
In a telemanipulation system for manipulating objects located in a workspace at a remote worksite by an operator from an operator's station, such as in a remote surgical system, the remote worksite having a manipulator with an end effector for manipulating an object at the workspace, such as a body cavity, a controller including a hand control at the control operator's station for remote control of the manipulator, an image capture device, such as a camera, and image output device for reproducing a viewable real-time image, the improvement wherein a position sensor associated with the image capture device senses position relative to the end effector and a processor transforms the viewable real-time image into a perspective image with correlated manipulation of the end effector by the hand controller such that the operator can manipulate the end effector and the manipulator as if viewing the workspace in true presence. Image transformation according to the invention includes translation, rotation and perspective correction.
摘要:
Ultrasonic imaging apparatus and method are shown which include electronic correction of focus defects produced by acoustic refractive index inhomogeneities within an object (14) being imaged. The region of interest (38) within which focus correction takes place is selected by the operator using control (42 or 84). The imaging system includes adjustable time delays (28-l through 28-c) through which return signals from transducers (10-l through 10-n) pass. Outputs from the delays are summed (30) and the resultant signal is envelope detected (32). The envelope detector output is prepared for display at display (36) by scan converter (34). The output from a focus correction delay control circuit (64) is used to control delay times of individual delays (28-l through 28-c) to provide for a delay profile across operative elements of transducer array (10), which delay profile includes delay profile components that correspond to low order terms of a series expansion, such as a Fourier series (FIG. 4). The adjustable signal delays (28-l through 28-c) are simultaneously adjusted by the focus correction delay control (64) during selection of delay profile component amplitudes which reduce focus defects within the region of interest 38. Either manual (FIG. 1) or automatic (FIG. 5) focus correction is provided.
摘要:
A reflex transmission ultrasonic imaging system and method are shown which include a transducer (10) for pulse insonification (14) of an object (12) and for receiving echo signals from within the object. Echo signals are converted to electrical signals at the transducer (10) and the electrical signals are supplied to a signal processor (38) through a switching matrix (20), delays (22), and transmit-receive switches (18). The signal processor includes a detector (46) and integrator (48) for integrating the detector output. Echo signals obtained from a range zone (BZ) opposite a focal point (F) are processed by processor (38) and supplied to hold circuit (60) to provide an image pixel signal value. A compensation pixel signal value for hold circuit (64) is obtained by repeating the transmitting-receiving operation using a beam which is unfocused at any point along the beam axis between the transducer (10) and backscatter zone (BZ). The image and compensation pixel signals from hold circuits (60) and (64) are combined at combiner (68) to provide for a compensated image pixel signal output from the combiner. Artifacts which other wise would result from non-uniform reflective properties of the beackscatter zone (BZ) are removed by this process. Compensated image pixel signals are displayed at display (72).
摘要:
Endoscopic method and apparatus are provided for the simultaneous visual and ultrasonic imaging of internal body parts through use of a probe insertable into a body cavity. The probe includes a rectilinear transducer array acoustically coupled to the body through a cylindrical focusing lens having an outer face which conforms to the probe contour. The transducer array is included in a pulsed ultrasonic imaging system of the B-scan type. A tube, which includes a flexible portion adjacent the probe, connects the probe to a control housing containing manually operated control mechanism for bending the flexible tube portion. A control handle extends from the side of the housing for control of bending by the operator. The pulsed ultrasonic imaging system includes pulse generator and pulse receiver means connected to individual elements of the transducer array by coaxial cables extending through the tube. Electronic beam focusing and scanning means for rectilinear B-scan operation are provided for imaging of objects at close distances adjacent the probe. Visual display means are provided for visual display of the ultrasonic image from the B-scan receiver. An optical illuminating and viewing system is provided for optically viewing internal body parts through the probe, which system includes an objective lens and illuminating means adjacent the distal ends of the probe and transducer array. A removable eyepiece at the housing is used for direct viewing by the operator while guiding the probe into desired position in the body cavity. Means also are provided for viewing the optical image by a video camera having an output connected to a monitor adjacent the ultrasonic image display. Consequently, both the optical and ultrasonic images are simultaneously displayable and viewable by the operator.
摘要:
Pulsed real-time B-scan ultrasonic method and apparatus are disclosed together with pulsed Doppler Ulrasonic method and apparatus. The B-scan apparatus includes a pulse operated transmitter and receiver operating at a first frequency, and the Doppler apparatus includes a pulse operated transmitter and receiver operating at a second frequency sufficiently far removed from the B-scan frequency to avoid interference therebetween. A synchronous pulse operation of the B-scan and Doppler systems is provided. The sysem includes a visual display means to which the receiver outputs are connected through a multiplexer operated to pass the B-scan receiver output to the visual display means whenever such B-scan output is present. The Doppler apparatus includes means for temporarily storing the Doppler receiver output, which stored Doppler signals subsequently are read out through the multiplexer to the visual display means between select lines of B-scan display. A simultaneous display of the B-scan image and a Doppler profile is provided when desired. A control stick unit, under one-hand control of the operator, is used to select the position of the line along which the Doppler profile is obtained and displayed. A cursor generator, under control stick control, is used to generate a cursor signal for display of a cursor along which the Doppler profile is displayed. The B-scan apparatus is operable with a normal or magnified display of a section of the object under investigation. Also, a reticle signal generator is included for tORIGIN OF INVENTIONThe invention described herein was made in the course of a contract with the Department of Health, Education and Welfare.